• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Administration
  • FAQ

Refine

Author

  • Stefan Beging (11)
  • Michael J. Schöning (10)
  • Arshak Poghossian (7)
  • Denise Molinnus (3)
  • G. Baldsiefen (2)
  • H. Busch (2)
  • L. Kleinen (2)
  • Manfred Biselli (2)
  • N. Laube (2)
  • Sudkanung Hataihimakul (2)
  • Torsten Wagner (2)
  • Werner Zang (2)
  • A. Pedraza (1)
  • C. Tsoumpas (1)
  • Carsten Lowis (1)
  • D. Mlynek (1)
  • Daniela Mlynek (1)
  • Danilo A. Oliveira (1)
  • Gerhard Baldsiefen (1)
  • Hans-Josef Ackermann (1)
+ more

Year of publication

  • 2021 (2)
  • 2020 (1)
  • 2015 (1)
  • 2014 (1)
  • 2010 (2)
  • 2009 (1)
  • 2008 (1)
  • 2007 (2)

Document Type

  • Article (9)
  • Conference Proceeding (2)

Language

  • English (9)
  • German (2)

Keywords

  • capacitive electrolyte–insulator–semiconductor sensors (1)
  • graphene oxide (1)
  • layer-by-layer technique (1)
  • nanomaterials (1)
  • polyaniline (1)

Institute

  • Fachbereich Medizintechnik und Technomathematik (10)
  • INB - Institut für Nano- und Biotechnologien (9)
  • Fachbereich Chemie und Biotechnologie (2)

11 search hits

  • 1 to 10
  • BibTeX
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Online-Messsysteme für die automatisierte Charakterisierung von feldeffektbasierten Biosensoren (2007)
Torsten Wagner ; Stefan Beging ; L. Rotter ; Arshak Poghossian ; Manfred Biselli ; Werner Zang ; Michael J. Schöning
Handheld measurement device for field-effect sensor structures: Practical evaluation and limitations (2007)
Torsten Wagner ; Rob J. Maris ; Hans-Josef Ackermann ; Ralph Otto ; Stefan Beging ; Arshak Poghossian ; Michael J. Schöning
Feldeffektbasierender Ca2+-sensitiver Sensor für den Einsatz im Nativurin zur Bestimmung des Harnsteinbildungsrisikos (2008)
Stefan Beging ; Arshak Poghossian ; Michael J. Schöning ; Sudkanung Hataihimakul ; H. Busch ; G. Baldsiefen ; N. Laube ; L. Kleinen ; R. Hosseiny
Field-effect calcium sensor for the determination of the risk of urinary stone formation (2010)
Stefan Beging ; Daniela Mlynek ; Sudkanung Hataihimakul ; Arshak Poghossian ; Gerhard Baldsiefen ; Heinz Busch ; Norbert Laube ; Lisa Kleinen ; Michael J. Schöning
Concept for a solid-state multi-parameter sensor system for cell-culture monitoring (2009)
Matthias Bäcker ; Stefan Beging ; Manfred Biselli ; Arshak Poghossian ; J. Wang ; Werner Zang ; Patrick Wagner ; Michael J. Schöning
Studying the spatially resolved immobilisation of enzymes on a capacitive field-effect structure by means of nano-spotting (2015)
Stefan Beging ; Marcel Leinhos ; Melanie Jablonski ; Arshak Poghossian ; Michael J. Schöning
Ion-selective sensors for the determination of the risk of urinary stone formation (2010)
Stefan Beging ; Arshak Poghossian ; D. Mlynek ; S. Hataihimakul ; A. Pedraza ; S. Dhawan ; N. Laube ; L. Kleinen ; G. Baldsiefen ; H. Busch ; Michael J. Schöning
Incorporating a hybrid urease-carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection (2014)
Jose R. Siqueira ; Denise Molinnus ; Stefan Beging ; Michael J. Schöning
Simulation study on the role of tissue-scattered events in improving sensitivity for a compact time of flight compton positron emission tomograph (2021)
M. Olderog ; P. Mohr ; Stefan Beging ; C. Tsoumpas ; Karl Ziemons
In positron emission tomography improving time, energy and spatial detector resolutions and using Compton kinematics introduces the possibility to reconstruct a radioactivity distribution image from scatter coincidences, thereby enhancing image quality. The number of single scattered coincidences alone is in the same order of magnitude as true coincidences. In this work, a compact Compton camera module based on monolithic scintillation material is investigated as a detector ring module. The detector interactions are simulated with Monte Carlo package GATE. The scattering angle inside the tissue is derived from the energy of the scattered photon, which results in a set of possible scattering trajectories or broken line of response. The Compton kinematics collimation reduces the number of solutions. Additionally, the time of flight information helps localize the position of the annihilation. One of the questions of this investigation is related to how the energy, spatial and temporal resolutions help confine the possible annihilation volume. A comparison of currently technically feasible detector resolutions (under laboratory conditions) demonstrates the influence on this annihilation volume and shows that energy and coincidence time resolution have a significant impact. An enhancement of the latter from 400 ps to 100 ps leads to a smaller annihilation volume of around 50%, while a change of the energy resolution in the absorber layer from 12% to 4.5% results in a reduction of 60%. The inclusion of single tissue-scattered data has the potential to increase the sensitivity of a scanner by a factor of 2 to 3 times. The concept can be further optimized and extended for multiple scatter coincidences and subsequently validated by a reconstruction algorithm.
Towards a multi-enzyme capacitive field-effect biosensor by comparative study of drop-coating and nano-spotting technique (2020)
Denise Molinnus ; Stefan Beging ; Carsten Lowis ; Michael J. Schöning
Multi-enzyme immobilization onto a capacitive field-effect biosensor by nano-spotting technique is presented. The nano-spotting technique allows to immobilize different enzymes simultaneously on the sensor surface with high spatial resolution without additional photolithographical patterning. The amount of applied enzymatic cocktail on the sensor surface can be tailored. Capacitive electrolyte-insulator-semiconductor (EIS) field-effect sensors with Ta2O5 as pH-sensitive transducer layer have been chosen to immobilize the three different (pL droplets) enzymes penicillinase, urease, and glucose oxidase. Nano-spotting immobilization is compared to conventional drop-coating method by defining different geometrical layouts on the sensor surface (fully, half-, and quarter-spotted). The drop diameter is varying between 84 µm and 102 µm, depending on the number of applied drops (1 to 4) per spot. For multi-analyte detection, penicillinase and urease are simultaneously nano-spotted on the EIS sensor. Sensor characterization was performed by C/V (capacitance/voltage) and ConCap (constant capacitance) measurements. Average penicillin, glucose, and urea sensitivities for the spotted enzymes were 81.7 mV/dec, 40.5 mV/dec, and 68.9 mV/dec, respectively.
  • 1 to 10

OPUS4 Logo

  • Contact
  • Imprint
  • Datenschutzerklärung
  • Sitelinks