Refine
Year of publication
Institute
Has Fulltext
- no (40)
Document Type
- Conference Proceeding (23)
- Article (14)
- Part of a Book (3)
Keywords
- 3D object detection (1)
- Anomaly detection (1)
- Business understanding (1)
- Datasets (1)
- Deep learning (1)
- Im-plementation of AI-systems (1)
- LiDAR (1)
- Neural networks (1)
- Participation (1)
- Process model (1)
To successfully develop and introduce concrete artificial intelligence (AI) solutions in operational practice, a comprehensive process model is being tested in the WIRKsam joint project. It is based on a methodical approach that integrates human, technical and organisational aspects and involves employees in the process. The chapter focuses on the procedure for identifying requirements for a work system that is implementing AI in problem-driven projects and for selecting appropriate AI methods. This means that the use case has already been narrowed down at the beginning of the project and must be completely defined in the following. Initially, the existing preliminary work is presented. Based on this, an overview of all procedural steps and methods is given. All methods are presented in detail and good practice approaches are shown. Finally, a reflection of the developed procedure based on the application in nine companies is given.
In this chapter, we report on our activities to create and maintain a fleet of autonomous load haul dump (LHD) vehicles for mining operations. The ever increasing demand for sustainable solutions and economic pressure causes innovation in the mining industry just like in any other branch. In this chapter, we present our approach to create a fleet of autonomous special purpose vehicles and to control these vehicles in mining operations. After an initial exploration of the site we deploy the fleet. Every vehicle is running an instance of our ROS 2-based architecture. The fleet is then controlled with a dedicated planning module. We also use continuous environment monitoring to implement a life-long mapping approach. In our experiments, we show that a combination of synthetic, augmented and real training data improves our classifier based on the deep learning network Yolo v5 to detect our vehicles, persons and navigation beacons. The classifier was successfully installed on the NVidia AGX-Drive platform, so that the abovementioned objects can be recognised during the dumper drive. The 3D poses of the detected beacons are assigned to lanelets and transferred to an existing map.
In this work, we report on our attempt to design and implement an early introduction to basic robotics principles for children at kindergarten age. One of the main challenges of this effort is to explain complex robotics contents in a way that pre-school children could follow the basic principles and ideas using examples from their world of experience. What sets apart our effort from other work is that part of the lecturing is actually done by a robot itself and that a quiz at the end of the lesson is done using robots as well. The humanoid robot Pepper from Softbank, which is a great platform for human–robot interaction experiments, was used to present a lecture on robotics by reading out the contents to the children making use of its speech synthesis capability. A quiz in a Runaround-game-show style after the lecture activated the children to recap the contents they acquired about how mobile robots work in principle. In this quiz, two LEGO Mindstorm EV3 robots were used to implement a strongly interactive scenario. Besides the thrill of being exposed to a mobile robot that would also react to the children, they were very excited and at the same time very concentrated. We got very positive feedback from the children as well as from their educators. To the best of our knowledge, this is one of only few attempts to use a robot like Pepper not as a tele-teaching tool, but as the teacher itself in order to engage pre-school children with complex robotics contents.