Refine
Institute
Has Fulltext
- no (9)
Document Type
- Conference Proceeding (5)
- Article (4)
Keywords
- Gamification (3)
- Adaptive Systems (1)
- Assembly (1)
- Augmented Reality (1)
- Digital Twin (1)
- Error Recovery (1)
- Human factors (1)
- Level system (1)
- Support System (1)
- User study (1)
Is part of the Bibliography
- no (9)
Adapting augmented reality systems to the users’ needs using gamification and error solving methods
(2021)
Animations of virtual items in AR support systems are typically predefined and lack interactions with dynamic physical environments. AR applications rarely consider users’ preferences and do not provide customized spontaneous support under unknown situations. This research focuses on developing adaptive, error-tolerant AR systems based on directed acyclic graphs and error resolving strategies. Using this approach, users will have more freedom of choice during AR supported work, which leads to more efficient workflows. Error correction methods based on CAD models and predefined process data create individual support possibilities. The framework is implemented in the Industry 4.0 model factory at FH Aachen.
The increasing digitalization brings new opportunities but also puts new challenges to modern industrial systems. Software agents are one of the key technologies towards self-optimizing factories and are currently used to address the needs of cyber-physical production systems (CPPS). However their interplay in industrial settings needs to be understood better.This paper focusses on securing a cloud infrastructure for multi-agent systems for industrial sites. An industrial site contains multiple production processes that need to communicate with each other and each physical resource is abstracted with a software agent. This volatile architecture needs to be managed and protected from manipulation. The proposed infrastructure presents a security concept for TCP/IP communication between agents, machines, and external networks. It is based on open-source software and tested on a three-node edge cloud controlling a model-plant.
While bringing new opportunities, the Industry 4.0 movement also imposes new challenges to the manufacturing industry and all its stakeholders. In this competitive environment, a skilled and engaged workforce is a key to success. Gamification can generate valuable feedbacks for improving employees’ engagement and performance. Currently, Gamification in workspaces focuses on computer-based assignments and training, while tasks that require manual labor are rarely considered. This research provides an overview of Enterprise Gamification approaches and evaluates the challenges. Based on that, a skill-based Gamification framework for manual tasks is proposed, and a case study in the Industry 4.0 model factory is shown.
Virtual Reality (VR) offers novel possibilities for remote training regardless of the availability of the actual equipment, the presence of specialists, and the training locations. Research shows that training environments that adapt to users' preferences and performance can promote more effective learning. However, the observed results can hardly be traced back to specific adaptive measures but the whole new training approach. This study analyzes the effects of a combined point and leveling VR-based gamification system on assembly training targeting specific training outcomes and users' motivations. The Gamified-VR-Group with 26 subjects received the gamified training, and the Non-Gamified-VR-Group with 27 subjects received the alternative without gamified elements. Both groups conducted their VR training at least three times before assembling the actual structure. The study found that a level system that gradually increases the difficulty and error probability in VR can significantly lower real-world error rates, self-corrections, and support usages. According to our study, a high error occurrence at the highest training level reduced the Gamified-VR-Group's feeling of competence compared to the Non-Gamified-VR-Group, but at the same time also led to lower error probabilities in real-life. It is concluded that a level system with a variable task difficulty should be combined with carefully balanced positive and negative feedback messages. This way, better learning results, and an improved self-evaluation can be achieved while not causing significant impacts on the participants' feeling of competence.
The fourth industrial revolution introduces disruptive technologies to production environments. One of these technologies are multi-agent systems (MASs), where agents virtualize machines. However, the agent's actual performances in production environments can hardly be estimated as most research has been focusing on isolated projects and specific scenarios. We address this gap by implementing a highly connected and configurable reference model with quantifiable key performance indicators (KPIs) for production scheduling and routing in single-piece workflows. Furthermore, we propose an algorithm to optimize the search of extrema in highly connected distributed systems. The benefits, limits, and drawbacks of MASs and their performances are evaluated extensively by event-based simulations against the introduced model, which acts as a benchmark. Even though the performance of the proposed MAS is, on average, slightly lower than the reference system, the increased flexibility allows it to find new solutions and deliver improved factory-planning outcomes. Our MAS shows an emerging behavior by using flexible production techniques to correct errors and compensate for bottlenecks. This increased flexibility offers substantial improvement potential. The general model in this paper allows the transfer of the results to estimate real systems or other models.
Industry 4.0 imposes many challenges for manufacturing companies and their employees. Innovative and effective training strategies are required to cope with fast-changing production environments and new manufacturing technologies. Virtual Reality (VR) offers new ways of on-the-job, on-demand, and off-premise training. A novel concept and evaluation system combining Gamification and VR practice for flexible assembly tasks is proposed in this paper and compared to existing works. It is based on directed acyclic graphs and a leveling system. The concept enables a learning speed which is adjustable to the users’ pace and dynamics, while the evaluation system facilitates adaptive work sequences and allows employee-specific task fulfillment. The concept was implemented and analyzed in the Industry 4.0 model factory at FH Aachen for mechanical assembly jobs.
Gamification applications are on the rise in the manufacturing sector to customize working scenarios, offer user-specific feedback, and provide personalized learning offerings. Commonly, different sensors are integrated into work environments to track workers’ actions. Game elements are selected according to the work task and users’ preferences. However, implementing gamified workplaces remains challenging as different data sources must be established, evaluated, and connected. Developers often require information from several areas of the companies to offer meaningful gamification strategies for their employees. Moreover, work environments and the associated support systems are usually not flexible enough to adapt to personal needs. Digital twins are one primary possibility to create a uniform data approach that can provide semantic information to gamification applications. Frequently, several digital twins have to interact with each other to provide information about the workplace, the manufacturing process, and the knowledge of the employees. This research aims to create an overview of existing digital twin approaches for digital support systems and presents a concept to use digital twins for gamified support and training systems. The concept is based upon the Reference Architecture Industry 4.0 (RAMI 4.0) and includes information about the whole life cycle of the assets. It is applied to an existing gamified training system and evaluated in the Industry 4.0 model factory by an example of a handle mounting.
Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers’ cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines.