Refine
Institute
Has Fulltext
- no (7)
Document Type
- Conference: Meeting Abstract (4)
- Conference Proceeding (2)
- Article (1)
Zugriffsart
- campus (5)
Is part of the Bibliography
- no (7)
The interplay of albumin (BSA) and lysozyme (LYZ) adsorbed simultaneously on titanium was analyzed by gel electrophoresis and BCA assay. It was found that BSA and lysozyme adsorb cooperatively. Additionally, the isoelectric point of the respective protein influences the adsorption. Also, the enzymatic activity of lysozyme and amylase (AMY) in mixtures with BSA was considered with respect to a possible influence of protein-protein interaction on enzyme activity. Indeed, an increase of lysozyme activity in the presence of BSA could be observed. In contrast, BSA does not influence the activity of amylase.
Die Ausbildung von Biofilmen in technischen Anlagen, wie z. B. Kühlkreisläufen, Wasseraufbereitungssystemen und Bioreaktoren, führen zu Materialschäden (Biofouling) und stark erhöhtem Energieaufwand. Im Rahmen der aktuellen Forschungsarbeiten erfolgen aktive sowie passive Bio-Modifikationen auf funktionalisierten magnetischen Mikropartikelober-flächen. Um die verschiedenen funktionalisierten magnetischen Mikropartikel zu analysieren und ihre antimikrobielle Wirkung zu testen, wird der Einsatz einer 3D-gedruckten, magnetischen Plattform für ein Fluoreszenz-basiertes Screening-System untersucht. Für den Oberflächenschutz wurden verschiedene, antimikrobiell funktionalisierte Partikelkombinationen mit dem Mikroorganismus Escherichia coli GFPmut2 in Bezug auf aktiven Oberflächenschutz verglichen. Um die antimikrobielle Oberflächeneffekte von synergistischen Kombinationen unterschiedlich funktionalisierter Partikel zu bestimmen, werden Oberflächen einem Magnetfeld ausgesetzt, das die Mikropartikel als definierte Schicht auf ihnen zurück hält. Diese modifizierten Oberflächen können sowohl durch Fluoreszenzspektroskopie als auch -mikroskopie analysiert werden.
Aktiver und passiver antimikrobieller Oberflächenschutz durch funktionalisierte Mikropartikel
(2014)
Mikrobielle Verunreinigungen von Oberflächen in technischen und medizinischen Systemen sind allgegenwärtig. Sie basieren üblicherweise auf adsorptiven Oberflächenbindungen organischer Komponenten (Proteine und Fette) oder Membrankomponenten aerogener sowie wassergebundener Mikroorganismen. In laufenden Forschungsarbeiten wird eine aktive sowie passive Biomodifikation von Oberflächen zu deren Schutz vor Adsorption von Proteinen und Mikroorganismen verfolgt. Der antimikrobielle Schutz soll dabei sowohl durch die Mikrostrukturierung bzw. Rauheitsanpassung der Oberflächen durch deren Beschichtung mit Mikro-und Nanopartikeln erfolgen. Ferner werden antimikrobielle Enzyme und funktionelle Gruppen auf den Mikropartikeln gebunden, um den Oberflächenschutz zu verstärken. In ersten Versuchen wurden quartäre Ammoniumverbindungen auf eigens synthetisierten superparamagnetischen Eisenoxid-Nanopartikeln (Durchmesser 10 – 30 nm) immobilisiert und die wachstumshemmende Wirkung untersucht. Erste Ergebnisse zeigten, dass eine Konzentration von 10 mg mL⁻¹ der Ammoniumverbindung in einer Wachstumshemmung des verwendeten Gram-negativen Modell-Mikroorganismus E. coli GFPmut2 resultiert. Zurzeit werden synergistisch wirkende Kombinationen von Partikeln mit Proteasen, quartären Ammoniumverbindungen, hydrophoben Oberflächen und mikrostrukturierten Oberflächen als antimikrobieller Schutz untersucht.
Die stoffliche Nutzung von Lignin aus Bioraffinerien ist ein wichtiger Bestandteil für den Wertschöpfungsprozess von nachwachsenden, pflanzlichen Rohstoffen. Lignin zählt zu den wenigen erneuerbaren Quellen für phenolische Bestandteile, wird aber derzeit meist nur thermisch verwertet. Ziel dieses Forschungsvorhabens ist die Funktionalisierung von Lignin zur Verbesserung der Adhäsionseigenschaften. Als funktionelle Gruppe wird die aromatische Aminosäure L-DOPA verwendet, die charakteristisch für die Adhäsionskraft von Muscheln ist. Lignin ist ein geeignetes Stützgerüst, da es ein Polymer ist, das durch enzymkatalysierte Polymerisation gebildet wird. Essenziell für die Entwicklung ist ein besseres Verständnis über die Bildung von Lignin-Polymeren und deren verschiedene Eigenschaften. Um die Einflussfaktoren auf Kettenlänge und Polymerisationseffizienz zu untersuchen, werden zurzeit sowohl Ligninmodellkomponenten (LMK) als auch gelöstes Organosolv-Lignin verwendet. Laufende Untersuchungen werden zeigen, ob sich die enzymatische Polymerisationsreaktion auf ein gelöstes Ligninpolymer aus einem Organosolv-Aufschluss übertragen lässt.
Bei der Verarbeitung nachwachsender Rohstoffe entsteht aus Cellulose oder Stärke u. a. das wichtige Produkt Glucose. Diese niedermolekulare Kohlenhydratquelle wird üblicherweise als Substrat für biotechnologische und chemische Synthesen verwendet. Ein wirtschaftlich interessantes Oxidationsprodukt der Glucose ist Gluconsäure, die beispielsweise als Lebensmittelzusatzstoff (E 574), in der Medizin und Metallindustrie Verwendung findet. Die Umsetzung des Monosaccharids zu Gluconsäure erfolgt entweder durch mikrobielle Fermentation oder der Oxidation an heterogenen Katalysatoren. Die Zielsetzung der Studie ist die Untersuchung der Glucoseoxidation an magnetisierbaren Gold-Nanopartikeln unter nachfolgender Bypass-Separation des Katalysators mittels einer neuen Mini-HGMS-Einheit (Hochgradient-Magnetseparation). Dieser Filtertyp ermöglicht die selektive Trennung magnetischer Partikel aus Suspensionen mit hohem Feststoffgehalt oder Viskosität. Erste Ergebnisse zeigen eine Beladungskapazität des selbstkonstruierten Mini-HGMS von 550 mg goldbeschichteter magnetisierbarer Nanopartikel. Die Oxidation erfolgt bei einem pH-Wertvon 9, bei 40 °C und mit 100 mM Glucose in einem begasten Rührkesselreaktor. Das System soll zukünftig zum Katalysatorrecycling von hochviskosen und Feststoffbelasteten Produktströmen aus Bioraffinerien eingesetzt werden.