Refine
Institute
Has Fulltext
- no (4)
Language
- English (4)
Document Type
- Article (3)
- Part of a Book (1)
Keywords
Is part of the Bibliography
- no (4)
In this article, we introduce how eye-tracking technology might become a promising tool to teach programming skills, such as debugging with ‘Eye Movement Modeling Examples’ (EMME). EMME are tutorial videos that visualize an expert's (e.g., a programming teacher's) eye movements during task performance to guide students’ attention, e.g., as a moving dot or circle. We first introduce the general idea behind the EMME method and present studies that showed first promising results regarding the benefits of EMME to support programming education. However, we argue that the instructional design of EMME varies notably across them, as evidence-based guidelines on how to create effective EMME are often lacking. As an example, we present our ongoing research on the effects of different ways to instruct the EMME model prior to video creation. Finally, we highlight open questions for future investigations that could help improving the design of EMME for (programming) education.
Eye movement modelling examples (EMME) are instructional videos that display a
teacher’s eye movements as “gaze cursor” (e.g. a moving dot) superimposed on the
learning task. This study investigated if previous findings on the beneficial effects of EMME would extend to online lecture videos and compared the effects of displaying the teacher’s gaze cursor with displaying the more traditional mouse cursor as a tool to guide learners’ attention. Novices (N = 124) studied a pre-recorded video lecture on how to model business processes in a 2 (mouse cursor absent/present) × 2 (gaze cursor absent/present) between-subjects design. Unexpectedly, we did not find significant effects of the presence of gaze or mouse cursors on mental effort and learning. However, participants who watched videos with the gaze cursor found it easier to follow the teacher. Overall, participants responded positively to the gaze cursor, especially when the mouse cursor was not displayed in the video.
Domain experts regularly teach novice students how to perform a task. This often requires them to adjust their behavior to the less knowledgeable audience and, hence, to behave in a more didactic manner. Eye movement modeling examples (EMMEs) are a contemporary educational tool for displaying experts’ (natural or didactic) problem-solving behavior as well as their eye movements to learners. While research on expert-novice communication mainly focused on experts’ changes in explicit, verbal communication behavior, it is as yet unclear whether and how exactly experts adjust their nonverbal behavior. This study first investigated whether and how experts change their eye movements and mouse clicks (that are displayed in EMMEs) when they perform a task naturally versus teach a task didactically. Programming experts and novices initially debugged short computer codes in a natural manner. We first characterized experts’ natural problem-solving behavior by contrasting it with that of novices. Then, we explored the changes in experts’ behavior when being subsequently instructed to model their task solution didactically. Experts became more similar to novices on measures associated with experts’ automatized processes (i.e., shorter fixation durations, fewer transitions between code and output per click on the run button when behaving didactically). This adaptation might make it easier for novices to follow or imitate the expert behavior. In contrast, experts became less similar to novices for measures associated with more strategic behavior (i.e., code reading linearity, clicks on run button) when behaving didactically.