Fachbereich Energietechnik
Refine
Year of publication
Institute
- Fachbereich Energietechnik (1120)
- Nowum-Energy (62)
- Solar-Institut Jülich (43)
- INB - Institut für Nano- und Biotechnologien (26)
- ECSM European Center for Sustainable Mobility (16)
- Kommission für Forschung und Entwicklung (14)
- Fachbereich Chemie und Biotechnologie (9)
- Fachbereich Medizintechnik und Technomathematik (9)
- Fachbereich Bauingenieurwesen (8)
- Fachbereich Elektrotechnik und Informationstechnik (3)
Language
- English (593)
- German (524)
- Multiple languages (1)
- Dutch (1)
- Spanish (1)
Document Type
- Article (606)
- Conference Proceeding (264)
- Book (126)
- Part of a Book (84)
- Doctoral Thesis (10)
- Conference: Meeting Abstract (8)
- Report (7)
- Other (4)
- Talk (3)
- Conference Poster (2)
Keywords
- Blitzschutz (18)
- Lightning protection (11)
- Earthquake (5)
- Diversity Management (4)
- Energy storage (4)
- Power plants (4)
- Risikomanagement (4)
- Seismic design (4)
- reinforced concrete (4)
- Associated liquids (3)
FUSION: Feature-based Processing of Heterogeneous Documents for Automated Information Extraction
(2022)
Information Extraction (IE) processes are often business-critical, but very hard to automate due to a heterogeneous data basis. Specific document characteristics, also called features, influence the optimal way of processing. Architecture for Automated Generation of Distributed Information Extraction Pipelines (ARTIFACT) supports businesses in successively automating their IE processes by finding optimal IE pipelines. However, ARTIFACT treats each document the same way, and does not enable document-specific processing. Single solution strategies can perform extraordinarily well for documents with particular traits. While manual approvals are superfluous for these documents, ARTIFACT does not provide the opportunity for Fully Automatic Processing (FAP). Therefore, we introduce an enhanced pattern that integrates an extensible and domain-independent concept of feature detection based on microservices. Due to this, we create two fundamental benefits. First, the document-specific process ing increases the quality of automated generated IE pipelines. Second, the system enables FAP to eliminate superfluous approval efforts.
In most municipal wastewater treatment plants (MWWTPs) that employ activated sludge systems for nitrogen (N) removal, aeration accounts for approximately 50–60 % of all electricity consumption. Deammonifikation (DEA) is well-recognized as an energy–efficient technology although its mainstream implementation is still questionable. The aim of the presented work was to determine the operational window of various deammonifying sludges (S1–S7) in NRW from side of MWWTPs with respect to the operational factors temperature (8–50 °C), pHvalue (3.5–10.5), and COD/N ratio (0.5–6). Efficiencies up to 3 mg N L⁻¹h⁻¹were achievable even below 15 °C except for S6. All of the sludges except S6 achieved an elimination rate of more than 2.08–16 mg N L⁻¹ h⁻¹ in the main stream pH range (7–8). At a COD/N ratio > 1.5, the metabolism of DEA was disturbed. Although N/DN was suspected to have occurred at higher COD/N ratio, no increase in elimination rate was observed for most of the sludges. All the sludges fulfilled the minimum requirement of N-elimination rate (2.08 mg N L⁻¹h⁻¹ ), which leads to a comparable reactor volume to conventional WWTP. A large-scale implementation of a main stream DEA in full stream cannot yet be recommended on the basis of these results but semi-technical trials.
Industrial digestates from short-fibre residues, generated in paper recycling mills, are driving interest in resource recovery. This study aims to explore their potential for water recovery. Understanding particle dynamics aids in optimizing dewatering for digestate management. The particle size distribution in this study revealed significant fractions: <0.63 μm (6–20%), 0.63–20 μm (38–52%), and >20 μm (11–16%). Pre-treatment with Na4P2O7 and H2O2 enhances settling and lowers total dissolved solids (TDSs) but results in variation of size distribution. Additionally, this study investigates further water reuse in paper mills, focusing on the quality of ultrafiltration (UF) permeate obtained from the digestate of short fibres. UF permeate analysis reveals deviations from freshwater standards in paper mills. Despite effective TS removal, UF permeate falls short of paper mill water standards due to high TDSs, electrical conductivity, and nutrient concentrations, necessitating further downstream treatment with nanofiltration or reverse osmosis. A substantial reduction of permeate flux from 31 to 5 L/(m2·h) over the time indicated fouling and inefficient membrane wash. The silt density index of the UF membrane at 30 min registered 2.1, suggesting potential fouling. Further investigations on optimizing UF operations to enhance permeate flux and exploring alternative UF membranes are required.
This paper deals with the problem of determining the optimal capacity of concentrated solar power (CSP) plants, especially in the context of hybrid solar power plants. This work presents an innovative analytical approach to optimizing the capacity of concentrated solar plants. The proposed method is based on the use of additional non-dimensional parameters, in particular, the design factor and the solar multiple factor. This paper presents a mathematical optimization model that focuses on the capacity of concentrated solar power plants where thermal storage plays a key role in the energy source. The analytical approach provides a more complete understanding of the design process for hybrid power plants. In addition, the use of additional factors and the combination of the proposed method with existing numerical methods allows for more refined optimization, which allows for the more accurate selection of the capacity for specific geographical conditions. Importantly, the proposed method significantly increases the speed of computation compared to that of traditional numerical methods. Finally, the authors present the results of the analysis of the proposed system of equations for calculating the levelized cost of electricity (LCOE) for hybrid solar power plants. The nonlinearity of the LCOE on the main calculation parameters is shown
The book covers various numerical field simulation methods, nonlinear circuit technology and its MF-S- and X-parameters, as well as state-of-the-art power amplifier techniques. It also describes newly presented oscillators and the emerging field of GHz plasma technology. Furthermore, it addresses aspects such as waveguides, mixers, phase-locked loops, antennas, and propagation effects, in combination with the bachelor's book 'High-Frequency Engineering,' encompassing all aspects related to the current state of GHz technology.
Producing fresh water from saline water has become one of the most difficult challenges to overcome especially with the high demand and shortage of fresh water. In this context, as part of a collaboration with Germany, the authors propose a design and implementation of a pilot multi-stage solar desalination system (MSD), remotely controlled, at Douar Al Hamri in the rural town of Boughriba in the province of Berkane, Morocco. More specifically, they present their contribution on the remote control and supervision system, which makes the functioning of the MSD system reliable and guarantees the production of drinking water for the population of Douar. The results obtained show that the electronic cards and computer communication software implemented allow the acquisition of all electrical (currents, voltages, powers, yields), thermal (temperatures of each stage), and meteorological (irradiance and ambient temperature), remote control and maintenance (switching on, off, data transfer). By comparing with the literature carried out in the field of solar energy, the authors conclude that the MSD and electronic desalination systems realized during this work represent a contribution in terms of the reliability and durability of providing drinking water in rural and urban areas.
Das Diskussionspapier beschreibt einen Prozess an der FH Aachen zur Entwicklung und Implementierung eines Self-Assessment-Tools für Studiengänge. Dieser Prozess zielte darauf ab, die Relevanz der Themen Digitalisierung, Internationalisierung und Nachhaltigkeit in Studiengängen zu stärken. Durch Workshops und kollaborative Entwicklung mit Studiendekan:innen entstand ein Fragebogen, der zur Reflexion und strategischen Weiterentwicklung der Studiengänge dient.
4CH TX/RX Surface Coil for 7T: Design, Optimization and Application for Cardiac Function Imaging
(2010)
Practical impediments of ultra high field cardiovascular MR (CVMR) can be catalogued in exacerbated magnetic field and radio frequency (RF) inhomogeneities, susceptibility and off-resonance effects, conductive and dielectric effects in tissue, and RF power deposition constraints, which all bear the potential to spoil the benefit of CVMR at 7T. Therefore, a four element cardiac transceive surface coil array was developed. Cardiac imaging provided clinically acceptable signal homogeneity with an excellent blood myocardium contrast. Subtle anatomic structures, such as pericardium, mitral and tricuspid valves and their apparatus, papillary muscles, and trabecles were accurately delineated.
As high-field cardiac MRI (CMR) becomes more widespread the propensity of ECG to distortions and mistriggering increases and with it the motivation for a cardiac triggering alternative. Hence, this study explores the suitability of acoustic cardiac triggering (ACT) for left ventricular (LV) function assessment in healthy subjects at 1.5T and 3.0T.