Fachbereich Elektrotechnik und Informationstechnik
Refine
Year of publication
Institute
- Fachbereich Elektrotechnik und Informationstechnik (1190)
- MASKOR Institut für Mobile Autonome Systeme und Kognitive Robotik (55)
- ECSM European Center for Sustainable Mobility (27)
- Fachbereich Maschinenbau und Mechatronik (6)
- Fachbereich Luft- und Raumfahrttechnik (4)
- Fachbereich Wirtschaftswissenschaften (4)
- Fachbereich Energietechnik (3)
- Fachbereich Bauingenieurwesen (2)
- Fachbereich Chemie und Biotechnologie (2)
- Fachbereich Medizintechnik und Technomathematik (2)
Language
- English (722)
- German (467)
- Multiple languages (1)
Document Type
- Article (631)
- Conference Proceeding (310)
- Book (115)
- Part of a Book (67)
- Patent (17)
- Report (9)
- Other (8)
- Conference: Meeting Abstract (6)
- Contribution to a Periodical (6)
- Course Material (6)
Keywords
- Multimediamarkt (7)
- Enterprise Architecture (5)
- MINLP (5)
- Engineering optimization (4)
- Gamification (4)
- Serious Game (4)
- Auslenkung (3)
- Digitale Transformation (3)
- Digitalisierung (3)
- Education (3)
In this field study we present an approach for the comprehensive and room-specific assessment of
parameters with the overall aim to realize energy-efficient provision of hygienically harmless and
thermally comfortable indoor environmental quality in naturally ventilated non-residential
buildings. The approach is based on (i) conformity assessment of room design parameters, (ii)
empirical determination of theoretically expected occupant-specific supply air flow rates and
corresponding air exchange rates, (iii) experimental determination of real occupant-specific
supply air flow rates and corresponding air exchange rates, (iv) measurement of indoor environmental
exposure conditions of T, RH, cCO2 , cPM2.5 and cTVOC, and (v) determination of real
energy demands for the prevailing ventilation scheme. Underlying assessment criteria comprise
the indoor environmental parameters of category II of EN 16798-1: Temperature T = 20 ◦C–24 ◦C,
and relative humidity RH = 25 %–60 % as well as the guide values of the German Federal
Environment Agency for cCO2 cPM2.5 and cTVOC of 1000 ppm, 15 μg m⁻³, and 1 mg m ⁻³,
respectively.
Investigation objects are six naturally ventilated classrooms of a German secondary school.
Major factors influencing indoor environmental quality in these classrooms are the specific room
volume per occupant and the window opening area. It is concluded that the rigorous implementation
of ventilation recommendations laid down by the German Federal Environment
Agency is ineffective with respect to anticipated indoor environmental parameters and inefficient
with respect to ventilation energy losses on the order of about 10 kWh m⁻² a ⁻¹ to 30 kWh m⁻²
a ⁻¹.
The emergence of automotive-grade LiDARs has given rise to new potential methods to develop novel advanced driver assistance systems (ADAS). However, accurate and reliable parking slot detection (PSD) remains a challenge, especially in the low-light conditions typical of indoor car parks. Existing camera-based approaches struggle with these conditions and require sensor fusion to determine parking slot occupancy. This paper proposes a parking slot detection (PSD) algorithm which utilizes the intensity of a LiDAR point cloud to detect the markings of perpendicular parking slots. LiDAR-based approaches offer robustness in low-light environments and can directly determine occupancy status using 3D information. The proposed PSD algorithm first segments the ground plane from the LiDAR point cloud and detects the main axis along the driving direction using a random sample consensus algorithm (RANSAC). The remaining ground point cloud is filtered by a dynamic Otsu’s threshold, and the markings of parking slots are detected in multiple windows along the driving direction separately. Hypotheses of parking slots are generated between the markings, which are cross-checked with a non-ground point cloud to determine the occupancy status. Test results showed that the proposed algorithm is robust in detecting perpendicular parking slots in well-marked car parks with high precision, low width error, and low variance. The proposed algorithm is designed in such a way that future adoption for parallel parking slots and combination with free-space-based detection approaches is possible. This solution addresses the limitations of camera-based systems and enhances PSD accuracy and reliability in challenging lighting conditions.
Ein Lehrbuch für die anwendungsorientierte Seite der Wirtschaftsinformatik. Dieses Lehrbuch der Wirtschaftsinformatik ist vor allem eines: anwendungsorientiert. Nutzen Sie die zahlreichen Fallbeispiele, um die Kerninhalte des Fachgebiets zu erlernen und einen Einblick in die umfassenden Einsatzmöglichkeiten der Informationstechnologien zu gewinnen, die in Zeiten der Digitalisierung für Wirtschaft und Gesellschaft unverzichtbar sind.
Von den Grundbegriffen der Informations- und Kommunikationstechnologie bis zur strategischen Planung, Nutzung und Entwicklung von Informationssystemen – dieses Buch bietet Ihnen alle Werkzeuge zur Integration neuer Konzepte in bestehende Softwarearchitekturen.
In this chapter, we report on our activities to create and maintain a fleet of autonomous load haul dump (LHD) vehicles for mining operations. The ever increasing demand for sustainable solutions and economic pressure causes innovation in the mining industry just like in any other branch. In this chapter, we present our approach to create a fleet of autonomous special purpose vehicles and to control these vehicles in mining operations. After an initial exploration of the site we deploy the fleet. Every vehicle is running an instance of our ROS 2-based architecture. The fleet is then controlled with a dedicated planning module. We also use continuous environment monitoring to implement a life-long mapping approach. In our experiments, we show that a combination of synthetic, augmented and real training data improves our classifier based on the deep learning network Yolo v5 to detect our vehicles, persons and navigation beacons. The classifier was successfully installed on the NVidia AGX-Drive platform, so that the abovementioned objects can be recognised during the dumper drive. The 3D poses of the detected beacons are assigned to lanelets and transferred to an existing map.
To successfully develop and introduce concrete artificial intelligence (AI) solutions in operational practice, a comprehensive process model is being tested in the WIRKsam joint project. It is based on a methodical approach that integrates human, technical and organisational aspects and involves employees in the process. The chapter focuses on the procedure for identifying requirements for a work system that is implementing AI in problem-driven projects and for selecting appropriate AI methods. This means that the use case has already been narrowed down at the beginning of the project and must be completely defined in the following. Initially, the existing preliminary work is presented. Based on this, an overview of all procedural steps and methods is given. All methods are presented in detail and good practice approaches are shown. Finally, a reflection of the developed procedure based on the application in nine companies is given.
Ga-doped Li7La3Zr2O12 garnet solid electrolytes exhibit the highest Li-ion conductivities among the oxide-type garnet-structured solid electrolytes, but instabilities toward Li metal hamper their practical application. The instabilities have been assigned to direct chemical reactions between LiGaO2 coexisting phases and Li metal by several groups previously. Yet, the understanding of the role of LiGaO2 in the electrochemical cell and its electrochemical properties is still lacking. Here, we are investigating the electrochemical properties of LiGaO2 through electrochemical tests in galvanostatic cells versus Li metal and complementary ex situ studies via confocal Raman microscopy, quantitative phase analysis based on powder X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron energy loss spectroscopy. The results demonstrate considerable and surprising electrochemical activity, with high reversibility. A three-stage reaction mechanism is derived, including reversible electrochemical reactions that lead to the formation of highly electronically conducting products. The results have considerable implications for the use of Ga-doped Li7La3Zr2O12 electrolytes in all-solid-state Li-metal battery applications and raise the need for advanced materials engineering to realize Ga-doped Li7La3Zr2O12for practical use.
Meitner-Auger-electron emitters have a promising potential for targeted radionuclide therapy of cancer because of their short range and the high linear energy transfer of Meitner-Auger-electrons (MAE). One promising MAE candidate is 197m/gHg with its half-life of 23.8 h and 64.1 h, respectively, and high MAE yield. Gold nanoparticles (AuNPs) that are labelled with 197m/gHg could be a helpful tool for radiation treatment of glioblastoma multiforme when infused into the surgical cavity after resection to prevent recurrence. To produce such AuNPs, 197m/gHg was embedded into pristine AuNPs. Two different syntheses were tested starting from irradiated gold containing trace amounts of 197m/gHg. When sodium citrate was used as reducing agent, no 197m/gHg labelled AuNPs were formed, but with tannic acid, 197m/gHg labeled AuNPs were produced. The method was optimized by neutralizing the pH (pH = 7) of the Au/197m/gHg solution, which led to labelled AuNPs with a size of 12.3 ± 2.0 nm as measured by transmission electron microscopy. The labelled AuNPs had a concentration of 50 μg (gold)/mL with an activity of 151 ± 93 kBq/mL (197gHg, time corrected to the end of bombardment).
Die potenziellen Auswirkungen der Digitalisierung auf die Lehre sind seit langem Gegenstand ausführlicher Diskussionen innerhalb der Wirtschaftsinformatik (WI) (z. B. in Auth et al. 2021, Barton et al. 2019, Klotz et al. 2019). Nicht zuletzt der in nahezu allen Wirtschaftszweigen bestehende Mangel an qualifizierten Fachkräften lenkt den Diskurs auf einen verbesserten Zugang zu Bildung und gleichen Bildungschancen. Aus dieser Vision heraus und dem Schub der Digitalisierung entstehen Bildungskonzepte wie Open Educational Resources (OER), die gesellschaftlichen Problemen, wie dem des Fachkräftemangels, entgegenwirken sollen. Im Rahmen dieses Kurzbeitrags wird das Projekt WiLMo - "Wirtschaftsinformatik Lehr- und Lernmodule" vorgestellt. WiLMo wird im Rahmen von OERContent.nrw unter Beteiligung von sechs Hochschulen entwickelt und gefördert. Alle Projektbeteiligten arbeiten gemeinsam daran, einheitliche digitale Lehr- und Lernmaterialien im OER-Format für die Kernmodule der Wirtschaftsinformatik zu entwickeln und in garantiert hoher Qualität zur Verfügung zu stellen.