Fachbereich Luft- und Raumfahrttechnik
Refine
Year of publication
Institute
- Fachbereich Luft- und Raumfahrttechnik (806)
- IfB - Institut für Bioengineering (144)
- ECSM European Center for Sustainable Mobility (76)
- ZHQ - Bereich Hochschuldidaktik und Evaluation (11)
- Fachbereich Medizintechnik und Technomathematik (8)
- Kommission für Forschung und Entwicklung (7)
- Fachbereich Maschinenbau und Mechatronik (6)
- Fachbereich Bauingenieurwesen (5)
- Fachbereich Elektrotechnik und Informationstechnik (4)
- Fachbereich Gestaltung (4)
Document Type
- Article (377)
- Conference Proceeding (217)
- Book (107)
- Part of a Book (43)
- Patent (19)
- Report (14)
- Doctoral Thesis (10)
- Conference: Meeting Abstract (8)
- Other (3)
- Conference Poster (2)
Keywords
- Karosseriebau (6)
- Strömungsmaschine (6)
- Turbine (6)
- avalanche (6)
- hydrogen (5)
- solar sail (5)
- car body construction (4)
- snow (4)
- Eisschicht (3)
- GOSSAMER-1 (3)
There is significant interest in sampling subglacial environments for geochemical and microbiological studies, yet those environments are typically difficult to access. Existing ice-drilling technologies make it cumbersome to maintain microbiologically clean access for sample acquisition and environmental stewardship of potentially fragile subglacial aquatic ecosystems. With the "IceMole", a minimally invasive, maneuverable subsurface ice probe, we have developed a clean glacial exploration technology for in-situ analysis and sampling of glacial ice and sub- and englacial materials. Its design is based on combining melting and mechanical stabilization, using an ice screw at the tip of the melting head to maintain firm contact between the melting head and the ice. The IceMole can change its melting direction by differential heating of the melting head and optional side wall heaters. Downward, horizontal and upward melting, as well as curve driving and penetration of particulate-ladden layers has already been demonstrated in several field tests. This maneuverability of the IceMole also necessitates a sophisticated on-board navigation system, capable of autonomous operations. Therefore, between 2012 and 2014, a more advanced probe was developed as part of the "Enceladus Explorer" (EnEx) project. The EnEx-IceMole offers systems for accurate positioning, based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection, which is all integrated through a high-level sensor fusion algorithm. In December 2014, the EnEx-IceMole was used for clean access into a unique subglacial aquatic environment at Blood Falls, Antarctica, where an englacial brine sample was successfully obtained after about 17 meters of oblique melting. Particular attention was paid to clean protocols for sampling for geochemical and microbiological analysis. In this contribution, we will describe the general technological approach of the IceMole and report on the results of its deployment at Blood Falls. In contrast to conventional melting-probe applications, which can only melt vertically, the IceMole realized an oblique melting path to penetrate the englacial conduit. Experimental and numerical results on melting at oblique angles are rare. Besides reporting on the IceMole technology and the field deployment itself, we will compare and discuss the observed melting behavior with re-analysis results in the context of a recently developed numerical model. Finally, we will present our first steps in utilizing the model to infer on the ambient cryo-environment.
Lifting propellers operate at oblique inflow and thus encounter severe dynamic loads during forward flight, impacting structural integrity, fatigue, and vibration. Numerical optimisation approaches consider aerodynamic, structural mechanical, and aeroacoustic aspects within preliminary design. To also account for dynamic loads during forward flight, a novel procedure allows their rapid estimation. Based on steady-state simulations combining strip theory and beam finite elements, aerodynamic excitation, damping, and stiffness are defined in the frequency domain. Loads are derived through a linear inflow model and quasi-steady aerodynamics. Damping and stiffness loads are linearised and transferred into matrix form to calculate the frequency response. The computationally expensive need for simulations in the time domain is thus avoided. Applicability extends to both fixed and variable pitch lifting propellers utilised in large multicopters for cargo or passenger transportation. Comparisons to time-marching simulations show good agreement with deviations of approximately 10%. The analytical derivation yields physical insights to understand and reduce dynamic loads and their magnification due to resonance.
Assessment of aeroacoustic optimisation schemes for a tilt-propeller application in hover and cruise
(2023)
Balancing propeller optimisation between cruise and hover conditions is a key challenge in eco-friendly aircraft design. This paper presents a novel multidisciplinary propeller optimisation approach, integrating blade element momentum theory and acoustic models. Three propeller design strategies are systematically evaluated in multidisciplinary propeller optimisation, considering aerodynamic efficiency and noise emissions. The design strategies and the optimisation scheme are assessed within the paper. A serial optimisation scheme improves the overall optimisation result and reduces the optimisation time significantly. In the serial approach, the design space is reduced stepwise. In the initial step, linear chord and parabolic twist distributions are sufficient for defining global propeller parameters like blade number and diameter. In contrast, detailed blade shape optimisation requires a parametric blade description. The findings are utilized to develop a novel optimisation scheme, reducing computational effort and enabling innovative air mobility solutions to be designed.
Development of hydrogen and micromix combustor for small and medium size gas turbine of Kawasaki
(2024)
Kawasaki (KHI) has made various improvements and commercialized hydrogen gas turbines for existing diffusion combustors (0–100 vol.% H2, wet combustion) and lean pre-mixed DLE combustors (0–30 vol.% H2). However, it is challenging for conventional combustion technology to achieve dry low NOx emissions for 100 vol.% hydrogen. Kawasaki’s unique approach is the development of a new dry combustion technology for high hydrogen content fuel: the micromix (MMX) combustion. Kawasaki established this combustion technology to achieve low NOx for 100 vol.% hydrogen combustion. Micromix is based on a large number of miniaturized non-premixed-type flames, making this concept inherently safe toward flashback. Recently, Kawasaki has commercialized a gas turbine with a micromix combustor as the world’s first dry gas turbine capable for 100 vol.% hydrogen. This paper shows the latest improvements of the micromix combustor before the commercialization with focus on NOx reduction achieved by decreasing the fuel injection hole diameter, and the extension of the operational flexibility by applying a supplemental burner system. During demonstration tests with a 1.8 MWel gas turbine, it could be proven that this novel combustion concept meets Japan’s fundamental NOx regulations (84 ppm referred to 15 vol.% residual O2) for pure hydrogen and furthermore can be operated with natural gas/hydrogen blends in the range up to 50 vol.% H2 over the entire load range.
This paper presents initial findings from aeroelastic studies conducted on a wing-propeller model, aimed at evaluating the impact of aerodynamic interactions on wing flutter mechanisms and overall aeroelastic performance. Utilizing a frequency domain method, the flutter onset within a specified flight speed range is assessed. Mid-fidelity tools with a time domain approach are then used to account for the complex aerodynamic interaction between the propeller and the wing. Specifically, open-source software DUST and MBDyn are leveraged for this purpose. This investigation covers both windmilling and thrusting conditions of the wing-propeller model. During the trim process, adjustments to the collective pitch of the blades are made to ensure consistency across operational points. Time histories are then analyzed to pinpoint flutter onset, and corresponding frequencies and damping ratios are meticulously identified. The results reveal a marginal destabilizing effect of aerodynamic interaction on flutter speed, approximately 5%. Notably, the thrusting condition demonstrates a greater destabilizing influence compared to windmilling. These comprehensive findings enhance the understanding of the aerodynamic behavior of such systems and offer valuable insights for early design predictions and the development of streamlined models for future endeavors.
This paper presents initial findings from aeroelastic studies conducted on a wing-propeller model, aimed at evaluating the impact of aerodynamic interactions on wing flutter mechanisms and overall aeroelastic performance. The flutter onset is assessed using a frequency-domain method. Mid-fidelity tools based on the time-domain approach are then exploited to account for the complex aerodynamic interaction between the propeller and the wing. Specifically, the open-source software DUST and MBDyn are leveraged for this purpose. The investigation covers both windmilling and thrusting conditions. During the trim process, adjustments to the collective pitch of the blades are made to ensure consistency across operational points. Time histories are then analyzed to pinpoint flutter onset, and corresponding frequencies and damping ratios are identified. The results reveal a marginal destabilizing effect of aerodynamic interaction on flutter speed, approximately 5%. Notably, the thrusting condition demonstrates a greater destabilizing influence compared to the windmilling case. These comprehensive findings enhance the understanding of the aerodynamic behavior of such systems and offer valuable insights for early design predictions and the development of streamlined models for future endeavors.
Effective government services rely on accurate population numbers to allocate resources. In Colombia and globally, census enumeration is challenging in remote regions and where armed conflict is occurring. During census preparations, the Colombian National Administrative Department of Statistics conducted social cartography workshops, where community representatives estimated numbers of dwellings and people throughout their regions. We repurposed this information, combining it with remotely sensed buildings data and other geospatial data. To estimate building counts and population sizes, we developed hierarchical Bayesian models, trained using nearby full-coverage census enumerations and assessed using 10-fold cross-validation. We compared models to assess the relative contributions of community knowledge, remotely sensed buildings, and their combination to model fit. The Community model was unbiased but imprecise; the Satellite model was more precise but biased; and the Combination model was best for overall accuracy. Results reaffirmed the power of remotely sensed buildings data for population estimation and highlighted the value of incorporating local knowledge.
Subglacial environments on Earth offer important analogs to Ocean World targets in our solar system. These unique microbial ecosystems remain understudied due to the challenges of access through thick glacial ice (tens to hundreds of meters). Additionally, sub-ice collections must be conducted in a clean manner to ensure sample integrity for downstream microbiological and geochemical analyses. We describe the field-based cleaning of a melt probe that was used to collect brine samples from within a glacier conduit at Blood Falls, Antarctica, for geomicrobiological studies. We used a thermoelectric melting probe called the IceMole that was designed to be minimally invasive in that the logistical requirements in support of drilling operations were small and the probe could be cleaned, even in a remote field setting, so as to minimize potential contamination. In our study, the exterior bioburden on the IceMole was reduced to levels measured in most clean rooms, and below that of the ice surrounding our sampling target. Potential microbial contaminants were identified during the cleaning process; however, very few were detected in the final englacial sample collected with the IceMole and were present in extremely low abundances (∼0.063% of 16S rRNA gene amplicon sequences). This cleaning protocol can help minimize contamination when working in remote field locations, support microbiological sampling of terrestrial subglacial environments using melting probes, and help inform planetary protection challenges for Ocean World analog mission concepts.
Within ESA's Cosmic Vision 2015-2025 plan, a mission to explore the Saturnian System, with special emphasis on its two moons Titan and Enceladus, was selected for study, termed TANDEM (Titan and Enceladus Mission). In this paper, we describe an optimized mission design for a TANDEM-derived solar electric propulsion (SEP) mission. We have chosen the SEP mission scenario for the interplanetary transfer of the TANDEM spacecraft because all feasible gravity assist sequences for a chemical transfer between 2015 and 2025 result in long flight times of about nine years. Our SEP system is based on the German RIT ion engine. For our optimized mission design, we have extensively explored the SEP parameter space (specific impulse, thrust level, power level) and have calculated an optimal interplanetary trajectory for each setting. In contrast to the original TANDEM mission concept, which intends to use two launch vehicles and an all-chemical transfer, our SEP mission design requires only a single Ariane 5 ECA launch for the same payload mass. Without gravity assist, it yields a faster and more flexible transfer with a fight time of less than seven years, and an increased payload ratio. Our mission design proves thereby the capability of SEP even for missions into the outer solar system.