MDPI
Refine
Year of publication
Institute
- Fachbereich Medizintechnik und Technomathematik (39)
- INB - Institut für Nano- und Biotechnologien (31)
- Fachbereich Chemie und Biotechnologie (16)
- IfB - Institut für Bioengineering (16)
- Fachbereich Maschinenbau und Mechatronik (10)
- IaAM - Institut für angewandte Automation und Mechatronik (9)
- Fachbereich Elektrotechnik und Informationstechnik (6)
- Fachbereich Energietechnik (6)
- Nowum-Energy (6)
- MASKOR Institut für Mobile Autonome Systeme und Kognitive Robotik (5)
Language
- English (94)
Document Type
- Article (87)
- Conference Proceeding (6)
- Book (1)
Keywords
Zugriffsart
- weltweit (92)
This study investigates the morphological, mechanical, and viscoelastic properties of bacterial cellulose (BC) hydrogels synthesized by the microbial consortium Medusomyces gisevii. BC gel films were produced under static (S) or bioreactor (BioR) conditions. Additionally, an anisotropic sandwich-like composite BC film was developed and tested, consisting of a rehydrated (S-RDH) BC film synthesized under static conditions, placed between two BioR-derived BC layers. Sample characterization was performed using scanning electron microscopy (SEM), atomic force microscopy (AFM), rheometry, and uniaxial stretching tests. To our knowledge, this is the first study to combine uniaxial and rheological tests for BC gels. AFM and SEM revealed that the organization of BC fibrils (80±20 nm in diameter) was similar to that of collagen fibers (96±31 nm) found in human dura mater, suggesting potential implications for neurosurgical practice. Stretching tests demonstrated that the drying and rehydration of BC films resulted in a 2- to 8-fold increase in rigidity compared to other samples. This trend was consistent across both small and large deformations, regardless of direction. Mechanically, the composite (BioR+S-RDH) outperformed BC hydrogels synthesized under static and bioreactor conditions by approx. 26%. The composite material (BioR+S-RDH) exhibited greater anisotropy in the stretching tests compared to S-RDH, but less than the BioR-derived hydrogels, which had anisotropy coefficients ranging from 1.29 to 2.03. BioR+S-RDH also demonstrated the most consistent viscoelastic behavior, indicating its suitability for withstanding shear stress and potential use in prosthetic applications. These findings should provide opportunities for further research and medical applications.
This paper deals with the problem of determining the optimal capacity of concentrated solar power (CSP) plants, especially in the context of hybrid solar power plants. This work presents an innovative analytical approach to optimizing the capacity of concentrated solar plants. The proposed method is based on the use of additional non-dimensional parameters, in particular, the design factor and the solar multiple factor. This paper presents a mathematical optimization model that focuses on the capacity of concentrated solar power plants where thermal storage plays a key role in the energy source. The analytical approach provides a more complete understanding of the design process for hybrid power plants. In addition, the use of additional factors and the combination of the proposed method with existing numerical methods allows for more refined optimization, which allows for the more accurate selection of the capacity for specific geographical conditions. Importantly, the proposed method significantly increases the speed of computation compared to that of traditional numerical methods. Finally, the authors present the results of the analysis of the proposed system of equations for calculating the levelized cost of electricity (LCOE) for hybrid solar power plants. The nonlinearity of the LCOE on the main calculation parameters is shown
This paper presents initial findings from aeroelastic studies conducted on a wing-propeller model, aimed at evaluating the impact of aerodynamic interactions on wing flutter mechanisms and overall aeroelastic performance. The flutter onset is assessed using a frequency-domain method. Mid-fidelity tools based on the time-domain approach are then exploited to account for the complex aerodynamic interaction between the propeller and the wing. Specifically, the open-source software DUST and MBDyn are leveraged for this purpose. The investigation covers both windmilling and thrusting conditions. During the trim process, adjustments to the collective pitch of the blades are made to ensure consistency across operational points. Time histories are then analyzed to pinpoint flutter onset, and corresponding frequencies and damping ratios are identified. The results reveal a marginal destabilizing effect of aerodynamic interaction on flutter speed, approximately 5%. Notably, the thrusting condition demonstrates a greater destabilizing influence compared to the windmilling case. These comprehensive findings enhance the understanding of the aerodynamic behavior of such systems and offer valuable insights for early design predictions and the development of streamlined models for future endeavors.
Enhancement of succinic acid production by Actinobacillus succinogenes in an electro-bioreactor
(2024)
This work examines the electrochemically enhanced production of succinic acid using the bacterium Actinobacillus succinogenes. The principal objective is to enhance the metabolic potential of glucose and CO2 utilization via the C4 pathway in order to synthesize succinic acid. We report on the development of an electro-bioreactor system to increase succinic acid production in a power-2-X approach. The use of activated carbon fibers as electrode surfaces and contact areas allows A. succinogenes to self-initiate biofilm formation. The integration of an electrical potential into the system shifts the redox balance from NAD+ to NADH, increasing the efficiency of metabolic processes. Mediators such as neutral red facilitate electron transfer within the system and optimize the redox reactions that are crucial for increased succinic acid production. Furthermore, the role of carbon nanotubes (CNTs) in electron transfer was investigated. The electro-bioreactor system developed here was operated in batch mode for 48 h and showed improvements in succinic acid yield and concentration. In particular, a run with 100 µM neutral red and a voltage of −600 mV achieved a yield of 0.7 gsuccinate·gglucose−1. In the absence of neutral red, a higher yield of 0.72 gsuccinate·gglucose−1 was achieved, which represents an increase of 14% compared to the control. When a potential of −600 mV was used in conjunction with 500 µg∙L−1 CNTs, a 21% increase in succinate concentration was observed after 48 h. An increase of 33% was achieved in the same batch by increasing the stirring speed. These results underscore the potential of the electro-bioreactor system to markedly enhance succinic acid production.
The emergence of automotive-grade LiDARs has given rise to new potential methods to develop novel advanced driver assistance systems (ADAS). However, accurate and reliable parking slot detection (PSD) remains a challenge, especially in the low-light conditions typical of indoor car parks. Existing camera-based approaches struggle with these conditions and require sensor fusion to determine parking slot occupancy. This paper proposes a parking slot detection (PSD) algorithm which utilizes the intensity of a LiDAR point cloud to detect the markings of perpendicular parking slots. LiDAR-based approaches offer robustness in low-light environments and can directly determine occupancy status using 3D information. The proposed PSD algorithm first segments the ground plane from the LiDAR point cloud and detects the main axis along the driving direction using a random sample consensus algorithm (RANSAC). The remaining ground point cloud is filtered by a dynamic Otsu’s threshold, and the markings of parking slots are detected in multiple windows along the driving direction separately. Hypotheses of parking slots are generated between the markings, which are cross-checked with a non-ground point cloud to determine the occupancy status. Test results showed that the proposed algorithm is robust in detecting perpendicular parking slots in well-marked car parks with high precision, low width error, and low variance. The proposed algorithm is designed in such a way that future adoption for parallel parking slots and combination with free-space-based detection approaches is possible. This solution addresses the limitations of camera-based systems and enhances PSD accuracy and reliability in challenging lighting conditions.
Perennial ryegrass (Lolium perenne) is an underutilized lignocellulosic biomass that has several benefits such as high availability, renewability, and biomass yield. The grass press-juice obtained from the mechanical pretreatment can be used for the bio-based production of chemicals. Lactic acid is a platform chemical that has attracted consideration due to its broad area of applications. For this reason, the more sustainable production of lactic acid is expected to increase. In this work, lactic acid was produced using complex medium at the bench- and reactor scale, and the results were compared to those obtained using an optimized press-juice medium. Bench-scale fermentations were carried out in a pH-control system and lactic acid production reached approximately 21.84 ± 0.95 g/L in complex medium, and 26.61 ± 1.2 g/L in press-juice medium. In the bioreactor, the production yield was 0.91 ± 0.07 g/g, corresponding to a 1.4-fold increase with respect to the complex medium with fructose. As a comparison to the traditional ensiling process, the ensiling of whole grass fractions of different varieties harvested in summer and autumn was performed. Ensiling showed variations in lactic acid yields, with a yield up to 15.2% dry mass for the late-harvested samples, surpassing typical silage yields of 6–10% dry mass.
The thermal conductivity of components manufactured using Laser Powder Bed Fusion (LPBF), also called Selective Laser Melting (SLM), plays an important role in their processing. Not only does a reduced thermal conductivity cause residual stresses during the process, but it also makes subsequent processes such as the welding of LPBF components more difficult. This article uses 316L stainless steel samples to investigate whether and to what extent the thermal conductivity of specimens can be influenced by different LPBF parameters. To this end, samples are set up using different parameters, orientations, and powder conditions and measured by a heat flow meter using stationary analysis. The heat flow meter set-up used in this study achieves good reproducibility and high measurement accuracy, so that comparative measurements between the various LPBF influencing factors to be tested are possible. In summary, the series of measurements show that the residual porosity of the components has the greatest influence on conductivity. The degradation of the powder due to increased recycling also appears to be detectable. The build-up direction shows no detectable effect in the measurement series.
In this work, we present a compact, bifunctional chip-based sensor setup that measures the temperature and electrical conductivity of water samples, including specimens from rivers and channels, aquaculture, and the Atlantic Ocean. For conductivity measurements, we utilize the impedance amplitude recorded via interdigitated electrode structures at a single triggering frequency. The results are well in line with data obtained using a calibrated reference instrument. The new setup holds for conductivity values spanning almost two orders of magnitude (river versus ocean water) without the need for equivalent circuit modelling. Temperature measurements were performed in four-point geometry with an on-chip platinum RTD (resistance temperature detector) in the temperature range between 2 °C and 40 °C, showing no hysteresis effects between warming and cooling cycles. Although the meander was not shielded against the liquid, the temperature calibration provided equivalent results to low conductive Milli-Q and highly conductive ocean water. The sensor is therefore suitable for inline and online monitoring purposes in recirculating aquaculture systems.
Biomass from various types of organic waste was tested for possible use in hydrogen production. The composition consisted of lignified samples, green waste, and kitchen scraps such as fruit and vegetable peels and leftover food. For this purpose, the enzymatic pretreatment of organic waste with a combination of five different hydrolytic enzymes (cellulase, amylase, glucoamylase, pectinase and xylase) was investigated to determine its ability to produce hydrogen (H2) with the hydrolyzate produced here. In course, the anaerobic rod-shaped bacterium T. neapolitana was used for H2 production. First, the enzymes were investigated using different substrates in preliminary experiments. Subsequently, hydrolyses were carried out using different types of organic waste. In the hydrolysis carried out here for 48 h, an increase in glucose concentration of 481% was measured for waste loads containing starch, corresponding to a glucose concentration at the end of hydrolysis of 7.5 g·L−1. In the subsequent set fermentation in serum bottles, a H2 yield of 1.26 mmol H2 was obtained in the overhead space when Terrific Broth Medium with glucose and yeast extract (TBGY medium) was used. When hydrolyzed organic waste was used, even a H2 yield of 1.37 mmol could be achieved in the overhead space. In addition, a dedicated reactor system for the anaerobic fermentation of T. neapolitana to produce H2 was developed. The bioreactor developed here can ferment anaerobically with a very low loss of produced gas. Here, after 24 h, a hydrogen concentration of 83% could be measured in the overhead space.
The artificial olfactory image was proposed by Lundström et al. in 1991 as a new strategy for an electronic nose system which generated a two-dimensional mapping to be interpreted as a fingerprint of the detected gas species. The potential distribution generated by the catalytic metals integrated into a semiconductor field-effect structure was read as a photocurrent signal generated by scanning light pulses. The impact of the proposed technology spread beyond gas sensing, inspiring the development of various imaging modalities based on the light addressing of field-effect structures to obtain spatial maps of pH distribution, ions, molecules, and impedance, and these modalities have been applied in both biological and non-biological systems. These light-addressing technologies have been further developed to realize the position control of a faradaic current on the electrode surface for localized electrochemical reactions and amperometric measurements, as well as the actuation of liquids in microfluidic devices.