DEAL Springer
Refine
Institute
- Fachbereich Luft- und Raumfahrttechnik (12)
- Fachbereich Medizintechnik und Technomathematik (12)
- ECSM European Center for Sustainable Mobility (8)
- IfB - Institut für Bioengineering (8)
- Fachbereich Chemie und Biotechnologie (6)
- Fachbereich Energietechnik (4)
- Fachbereich Wirtschaftswissenschaften (4)
- INB - Institut für Nano- und Biotechnologien (4)
- Fachbereich Bauingenieurwesen (3)
- Solar-Institut Jülich (3)
Document Type
- Article (41)
Keywords
- CFD (2)
- Local path planning (2)
- Obstacle avoidance (2)
- UAV (2)
- acyl-amino acids (2)
- aminoacylase (2)
- Actuator disk modelling (1)
- Aeroelasticity (1)
- Aircraft sizing (1)
- Algal Turf Scrubber (1)
Zugriffsart
- weltweit (40)
Integrative biomechanics of a human–robot carrying task : implications for future collaborative work
(2025)
Patients with sarcopenia, who face difficulties in carrying heavy loads, may benefit from collaborative robotic assistance that is modeled after human–human interaction. The objective of this study is to describe the kinematics and spatio-temporal parameters during a collaborative carrying task involving both human and robotic partners. Fourteen subjects carried a table while moving forward with a human and a robotic partner. The movements were recorded using a three-dimensional motion capture system. The subjects successfully completed the task of carrying the table with the robot. No significant differences were found in the shoulder and elbow flexion/extension angles. In human–human dyads, the center of mass naturally oscillated vertically with an amplitude of approximately 2 cm. The here presented results of the human–human interaction serve as a model for the development of future robotic systems, designed for collaborative manipulation.
This paper introduces three novel approaches to size geothermal energy piles in a MILP, offering fresh perspectives and potential solutions. The research overlooks MILP models that incorporate the sizing of a geothermal borefield. Therefore, this paper presents a new model utilizing a g-function model to regulate the power limits. Geothermal energy is an essential renewable source, particularly for heating and cooling. Complex energy systems, with their diverse sources of heating and cooling and intricate interactions, are crucial for a climate-neutral energy system. This work significantly contributes to the integration of geothermal energy as a vital energy source into the modelling of such complex systems. Borehole heat exchangers help generate heat in low-temperature energy systems. However, optimizing these exchangers using mixed-integer-linear programming (MILP), which only allows for linear equations, is complex. The current research only uses R-C, reservoir, or g-function models for pre-sized borefields. As a result, borehole heat exchangers are often represented by linear factors such as 50 W/m for extraction or injection limits. A breakthrough in the accuracy of borehole heat exchanger sizing has been achieved with the development of a new model, which has been rigorously compared to two simpler models. The geothermal system was configured for three energy systems with varying ground and bore field parameters. The results were then compared with existing geothermal system tools. The new model provides more accurate depth sizing with an error of less than 5 % compared to simpler models with an error higher than 50 %, although it requires more calculation time. The new model can lead to more accurate borefield sizing in MILP applications to optimize energy systems. This new model is especially beneficial for large-scale projects that are highly dependent on borefield size.
Obstacle encounter probability dependent local path planner for UAV operation in urban environments
(2024)
Unmanned aerial vehicles (UAVs) are well-suited for various short-distance missions in urban environments. However, the path planner of such UAV is constantly challenged with the choice between avoiding obstacles horizontally or vertically. If the path planner relies on sensor information only, i.e. the path planner is a local planner, usually predefined manoeuvres or preferences are used to find a possible way. However, this method is stiff and inflexible. This work proposes a probabilistic decision-maker to set the control parameters of a classic local path planner during a flight mission. The decision-maker defines whether performing horizontal or vertical avoidance is preferable based on the probability of encountering a given number of obstacles. Here, the decision-maker considers predictions of possible future avoidance manoeuvres. It also defines an ideal flight altitude based on the probability of encountering obstacles. This work analyses the building height of all European capital cities and the probability of encountering obstacles at different altitudes to feed the decision-maker. We tested the feasibility of the proposed decision-maker with the 3DVFH*, a commonly used local path planner, in multiple simulations. The proposed probabilistic decision-maker allows the local path planner to reach the goal point significantly more often than the standard version of the 3DVFH*.
To respond to the increasing demand for hyaluronic acid (HA) in dietary supplements (DSs) and nutricosmetics marketed for the treatment of osteoarthritis or moistening, it is essential to have an accurate and reliable method for its analysis in the final products. The study aimed to develop and validate alternative method for the quality control of HA in DSs using low-field (LF) and high-field (HF) nuclear magnetic resonance (NMR) spectroscopy at 80 MHz and 600 MHz, respectively. Moreover, chondroitin sulphate (CH), another active ingredient in DSs, can be simultaneously quantified. The 1H-NMR methods have been successfully validated in terms of limit of detection (LOD) and limit of quantitation (LOQ), which were found to be 0.1 mg/mL and 0.2 mg/mL (80 MHz) as well as 0.2 mg/mL and 0.6 mg/mL (600 MHz). Recovery rates were estimated to be between 92 and 120% on both spectrometers; precision including sample preparation was found to be 4.2% and 8.0% for 600 MHz and 80 MHz, respectively. Quantitative results obtained by HF and LF NMR were comparable for 16 DSs with varying matrix. HF NMR experiments at 70 ℃ serve as a simple and efficient quality control tool for HA and CH in multicomponent DSs. Benchtop NMR measurements, upon preceding acid hydrolysis, offer a cost-effective and cryogen-free alternative for analyzing DSs in the absence of CH and paramagnetic matrix components.
Unmanned Aerial Vehicles (UAV) constantly gain in versatility. However, more reliable path planning algorithms are required until full autonomous UAV operation is possible. This work investigates the algorithm 3DVFH* and analyses its dependency on its cost function weights in 2400 environments. The analysis shows that the 3DVFH* can find a suitable path in every environment. However, a particular type of environment requires a specific choice of cost function weights. For minimal failure, probability interdependencies between the weights of the cost function have to be considered. This dependency reduces the number of control parameters and simplifies the usage of the 3DVFH*. Weights for costs associated with vertical evasion (pitch cost) and vicinity to obstacles (obstacle cost) have the highest influence on the failure probability of the local path planner. Environments with mainly very tall buildings (like large American city centres) require a preference for horizontal avoidance manoeuvres (achieved with high pitch cost weights). In contrast, environments with medium-to-low buildings (like European city centres) benefit from vertical avoidance manoeuvres (achieved with low pitch cost weights). The cost of the vicinity to obstacles also plays an essential role and must be chosen adequately for the environment. Choosing these two weights ideal is sufficient to reduce the failure probability below 10%.
Lifting propellers are of increasing interest for Advanced Air Mobility. All propellers and rotors are initially twisted beams, showing significant extension–twist coupling and centrifugal twisting. Torsional deformations severely impact aerodynamic performance. This paper presents a novel approach to assess different reasons for torsional deformations. A reduced-order model runs large parameter sweeps with algebraic formulations and numerical solution procedures. Generic beams represent three different propeller types for General Aviation, Commercial Aviation, and Advanced Air Mobility. Simulations include solid and hollow cross-sections made of aluminum, steel, and carbon fiber-reinforced polymer. The investigation shows that centrifugal twisting moments depend on both the elastic and initial twist. The determination of the centrifugal twisting moment solely based on the initial twist suffers from errors exceeding 5% in some cases. The nonlinear parts of the torsional rigidity do not significantly impact the overall torsional rigidity for the investigated propeller types. The extension–twist coupling related to the initial and elastic twist in combination with tension forces significantly impacts the net cross-sectional torsional loads. While the increase in torsional stiffness due to initial twist contributes to the overall stiffness for General and Commercial Aviation propellers, its contribution to the lift propeller’s stiffness is limited. The paper closes with the presentation of approximations for each effect identified as significant. Numerical evaluations are necessary to determine each effect for inhomogeneous cross-sections made of anisotropic material.
Many important properties of bacterial cellulose (BC), such as moisture absorption capacity, elasticity and tensile strength, largely depend on its structure. This paper presents a study on the effect of the drying method on BC films produced by Medusomyces gisevii using two different procedures: room temperature drying (RT, (24 ± 2 °C, humidity 65 ± 1%, dried until a constant weight was reached) and freeze-drying (FD, treated at − 75 °C for 48 h). BC was synthesized using one of two different carbon sources—either glucose or sucrose. Structural differences in the obtained BC films were evaluated using atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction. Macroscopically, the RT samples appeared semi-transparent and smooth, whereas the FD group exhibited an opaque white color and sponge-like structure. SEM examination showed denser packing of fibrils in FD samples while RT-samples displayed smaller average fiber diameter, lower surface roughness and less porosity. AFM confirmed the SEM observations and showed that the FD material exhibited a more branched structure and a higher surface roughness. The samples cultivated in a glucose-containing nutrient medium, generally displayed a straight and ordered shape of fibrils compared to the sucrose-derived BC, characterized by a rougher and wavier structure. The BC films dried under different conditions showed distinctly different crystallinity degrees, whereas the carbon source in the culture medium was found to have a relatively small effect on the BC crystallinity.
N-Acyl-amino acids can act as mild biobased surfactants, which are used, e.g., in baby shampoos. However, their chemical synthesis needs acyl chlorides and does not meet sustainability criteria. Thus, the identification of biocatalysts to develop greener synthesis routes is desirable. We describe a novel aminoacylase from Paraburkholderia monticola DSM 100849 (PmAcy) which was identified, cloned, and evaluated for its N-acyl-amino acid synthesis potential. Soluble protein was obtained by expression in lactose autoinduction medium and co-expression of molecular chaperones GroEL/S. Strep-tag affinity purification enriched the enzyme 16-fold and yielded 15 mg pure enzyme from 100 mL of culture. Biochemical characterization revealed that PmAcy possesses beneficial traits for industrial application like high temperature and pH-stability. A heat activation of PmAcy was observed upon incubation at temperatures up to 80 °C. Hydrolytic activity of PmAcy was detected with several N-acyl-amino acids as substrates and exhibited the highest conversion rate of 773 U/mg with N-lauroyl-L-alanine at 75 °C. The enzyme preferred long-chain acyl-amino-acids and displayed hardly any activity with acetyl-amino acids. PmAcy was also capable of N-acyl-amino acid synthesis with good conversion rates. The best synthesis results were obtained with the cationic L-amino acids L-arginine and L-lysine as well as with L-leucine and L-phenylalanine. Exemplarily, L-phenylalanine was acylated with fatty acids of chain lengths from C8 to C18 with conversion rates of up to 75%. N-lauroyl-L-phenylalanine was purified by precipitation, and the structure of the reaction product was verified by LC–MS and NMR.
New European Union (EU) regulations for UAS operations require an operational risk analysis, which includes an estimation of the potential danger of the UAS crashing. A key parameter for the potential ground risk is the kinetic impact energy of the UAS. The kinetic energy depends on the impact velocity of the UAS and, therefore, on the aerodynamic drag and the weight during free fall. Hence, estimating the impact energy of a UAS requires an accurate drag estimation of the UAS in that state. The paper at hand presents the aerodynamic drag estimation of small-scale multirotor UAS. Multirotor UAS of various sizes and configurations were analysed with a fully unsteady Reynolds-averaged Navier–Stokes approach. These simulations included different velocities and various fuselage pitch angles of the UAS. The results were compared against force measurements performed in a subsonic wind tunnel and provided good consistency. Furthermore, the influence of the UAS`s fuselage pitch angle as well as the influence of fixed and free spinning propellers on the aerodynamic drag was analysed. Free spinning propellers may increase the drag by up to 110%, depending on the fuselage pitch angle. Increasing the fuselage pitch angle of the UAS lowers the drag by 40% up to 85%, depending on the UAS. The data presented in this paper allow for increased accuracy of ground risk assessments.