The 10 most recently published documents
Enhancement of succinic acid production by Actinobacillus succinogenes in an electro-bioreactor
(2024)
This work examines the electrochemically enhanced production of succinic acid using the bacterium Actinobacillus succinogenes. The principal objective is to enhance the metabolic potential of glucose and CO2 utilization via the C4 pathway in order to synthesize succinic acid. We report on the development of an electro-bioreactor system to increase succinic acid production in a power-2-X approach. The use of activated carbon fibers as electrode surfaces and contact areas allows A. succinogenes to self-initiate biofilm formation. The integration of an electrical potential into the system shifts the redox balance from NAD+ to NADH, increasing the efficiency of metabolic processes. Mediators such as neutral red facilitate electron transfer within the system and optimize the redox reactions that are crucial for increased succinic acid production. Furthermore, the role of carbon nanotubes (CNTs) in electron transfer was investigated. The electro-bioreactor system developed here was operated in batch mode for 48 h and showed improvements in succinic acid yield and concentration. In particular, a run with 100 µM neutral red and a voltage of −600 mV achieved a yield of 0.7 gsuccinate·gglucose−1. In the absence of neutral red, a higher yield of 0.72 gsuccinate·gglucose−1 was achieved, which represents an increase of 14% compared to the control. When a potential of −600 mV was used in conjunction with 500 µg∙L−1 CNTs, a 21% increase in succinate concentration was observed after 48 h. An increase of 33% was achieved in the same batch by increasing the stirring speed. These results underscore the potential of the electro-bioreactor system to markedly enhance succinic acid production.
The emergence of automotive-grade LiDARs has given rise to new potential methods to develop novel advanced driver assistance systems (ADAS). However, accurate and reliable parking slot detection (PSD) remains a challenge, especially in the low-light conditions typical of indoor car parks. Existing camera-based approaches struggle with these conditions and require sensor fusion to determine parking slot occupancy. This paper proposes a parking slot detection (PSD) algorithm which utilizes the intensity of a LiDAR point cloud to detect the markings of perpendicular parking slots. LiDAR-based approaches offer robustness in low-light environments and can directly determine occupancy status using 3D information. The proposed PSD algorithm first segments the ground plane from the LiDAR point cloud and detects the main axis along the driving direction using a random sample consensus algorithm (RANSAC). The remaining ground point cloud is filtered by a dynamic Otsu’s threshold, and the markings of parking slots are detected in multiple windows along the driving direction separately. Hypotheses of parking slots are generated between the markings, which are cross-checked with a non-ground point cloud to determine the occupancy status. Test results showed that the proposed algorithm is robust in detecting perpendicular parking slots in well-marked car parks with high precision, low width error, and low variance. The proposed algorithm is designed in such a way that future adoption for parallel parking slots and combination with free-space-based detection approaches is possible. This solution addresses the limitations of camera-based systems and enhances PSD accuracy and reliability in challenging lighting conditions.
Additive Manufacturing (AM) is a topic that is becoming more relevant to many companies globally. With AM's progressive development and use for series production, integrating the technology into existing production structures is becoming an important criterion for businesses. This study qualitatively examines the actual state and different perspectives on the integration of AM in production structures. Seven semi-structured interviews were conducted and analyzed. The interview partners were high-level experts in Additive Manufacturing and production systems from industry and science. Four main themes were identified. Key findings are the far-reaching interrelationships and implications of AM within production structures. Specific AM-related aspects were identified. Those can be used to increase the knowledge and practical application of the technology in the industry and as a foundation for economic considerations.
The fourth industrial revolution is on its way to reshape manufacturing and value creation in a profound way. The underlying technologies like cyber-physical systems (CPS), big data, collaborative robotics, additive manufacturing or artificial intelligence offer huge potentials for the optimization and evolution of production systems. However, many manufacturing companies struggle to implement these technologies. This can only in part be attributed to the lack of skilled personal within these companies or a missing digitalization strategy. Rather, there is a fundamental incompatibility between the way current production systems and companies (Industry 3.0) are structured across multiple dimensions compared to what is necessary for industry 4.0. This is especially true in manufacturing systems and their transition towards flexible, decentralized and autonomous value creation networks. This paper shows across various dimensions these incompatibilities within manufacturing systems, explores their reasons and discusses a different approach to create a foundation for Industry 4.0 in manufacturing companies.
Establishing high-performance polymers in additive manufacturing opens up new industrial applications. Polyetheretherketone (PEEK) was initially used in aerospace but is now widely applied in automotive, electronics, and medical industries. This study focuses on developing applications using PEEK and Fused Filament Fabrication for cost-efficient vulcanization injection mold production. A proof of concept confirms PEEK’s suitability for AM mold making, withstanding vulcanization conditions. Printing PEEK above its glass transition temperature of 145 °C is preferable due to its narrow process window. A new process strategy at room temperature is discussed, with micrographs showing improved inter-layer bonding at 410°C nozzle temperature and 0.1 mm layer thickness. Minimizing the layer thickness from 0.15 mm to 0.1 mm improves tensile strength by 16%.
In the face of the current trend towards larger and more complex production tasks in the SLM process and the current limitations in terms of maximum build space, the welding of SLM components to each other or to conventionally manufactured parts is becoming increasingly relevant. The fusion welding of SLM components made of 316L has so far been rarely investigated and if so, then for highly specialised laser welding processes. When welding with industrial gas welding processes such as MIG/MAG or TIG welding, distortions occur which are associated with the resulting residual stresses in the components. This paper investigates process-side influencing factors to avoid resulting residual stresses in SLM components made of 316L. The aim is to develop a strategy to build up SLM components as stress-free as possible in order to join them as profitably as possible with a downstream welding process. For this purpose, influencing parameters such as laser power, scan speed, but also scan vector length and different scan patterns are investigated with regard to their influence on residual stresses.
Air–water flows
(2024)
High Froude-number open-channel flows can entrain significant volumes of air, a phenomenon that occurs continuously in spillways, in free-falling jets and in hydraulic jumps, or as localized events, notably at the toe of hydraulic jumps or in plunging jets. Within these flows, turbulence generates millions of bubbles and droplets as well as highly distorted wavy air–water interfaces. This phenomenon is crucial from a design perspective, as it influences the behaviour of high-velocity flows, potentially impairing the safety of dam operations. This review examines recent scientific and engineering progress, highlighting foundational studies and emerging developments. Notable advances have been achieved in the past decades through improved sampling of flows and the development of physics-based models. Current challenges are also identified for instrumentation, numerical modelling and (up)scaling that hinder the formulation of fundamental theories, which are instrumental for improving predictive models, able to offer robust support for the design of large hydraulic structures at prototype scale.
Easy-read and large language models: on the ethical dimensions of LLM-based text simplification
(2024)
The production of easy-read and plain language is a challenging task, requiring well-educated experts to write context-dependent simplifications of texts. Therefore, the domain of easy-read and plain language is currently restricted to the bare minimum of necessary information. Thus, even though there is a tendency to broaden the domain of easy-read and plain language, the inaccessibility of a significant amount of textual information excludes the target audience from partaking or entertainment and restricts their ability to live life autonomously. Large language models can solve a vast variety of natural language tasks, including the simplification of standard language texts to easy-read or plain language. Moreover, with the rise of generative models like GPT, easy-read and plain language may be applicable to all kinds of natural language texts, making formerly inaccessible information accessible to marginalized groups like, a.o., non-native speakers, and people with mental disabilities. In this paper, we argue for the feasibility of text simplification and generation in that context, outline the ethical dimensions, and discuss the implications for researchers in the field of ethics and computer science.
The quest for scientifically advanced and sustainable solutions is driven by growing environmental and economic issues associated with coal mining, processing, and utilization. Consequently, within the coal industry, there is a growing recognition of the potential of microbial applications in fostering innovative technologies. Microbial-based coal solubilization, coal beneficiation, and coal dust suppression are green alternatives to traditional thermochemical and leaching technologies and better meet the need for ecologically sound and economically viable choices. Surfactant-mediated approaches have emerged as powerful tools for modeling, simulation, and optimization of coal-microbial systems and continue to gain prominence in clean coal fuel production, particularly in microbiological co-processing, conversion, and beneficiation. Surfactants (surface-active agents) are amphiphilic compounds that can reduce surface tension and enhance the solubility of hydrophobic molecules. A wide range of surfactant properties can be achieved by either directly influencing microbial growth factors, stimulants, and substrates or indirectly serving as frothers, collectors, and modifiers in the processing and utilization of coal. This review highlights the significant biotechnological potential of surfactants by providing a thorough overview of their involvement in coal biodegradation, bioprocessing, and biobeneficiation, acknowledging their importance as crucial steps in coal consumption.