Refine
Year of publication
Document Type
- Article (1250)
- Conference Proceeding (172)
- Book (39)
- Part of a Book (35)
- Doctoral Thesis (17)
- Patent (4)
- Other (3)
- Lecture (2)
Language
- English (1522) (remove)
Keywords
- Biosensor (25)
- Finite-Elemente-Methode (12)
- Einspielen <Werkstoff> (10)
- CAD (8)
- civil engineering (8)
- Bauingenieurwesen (7)
- FEM (6)
- Clusterion (5)
- shakedown analysis (5)
- Air purification (4)
- Hämoglobin (4)
- Limit analysis (4)
- Luftreiniger (4)
- Plasmacluster ion technology (4)
- Raumluft (4)
- Shakedown analysis (4)
- Einspielanalyse (3)
- Kohlenstofffaser (3)
- Lipopolysaccharide (3)
- Shakedown (3)
Institute
- Fachbereich Medizintechnik und Technomathematik (1522) (remove)
Lignite biosolubilization and bioconversion by Bacillus sp.: the collation of analytical data
(2020)
The carbonized rice husk (CRH) was evaluated for its wound healing activity in rats using excision models. In this study, the influences of CRH on wound healing in rat skin in vivo and cellular behavior of human dermal fibroblasts in vitro were investigated. The obtained results showed that the CRH treatment promoted wound epithelization in rats and exhibited moderate inhibition of cell proliferation in vitro. CRH with lanolin oil treated wounds were found to epithelize faster as compared to controls.
Retinal Vessel Analysis (RVA) in the context of subarachnoid hemorrhage: A proof of concept study
(2016)
Detecting synchronization clusters in multivariate time series via coarse-graining of Markov chains
(2007)
Novel organic membrane-based thin-film microsensors for the determination of heavy metal cations
(2006)
A first step towards the fabrication and electrochemical evaluation of thin-film microsensors based on organic PVC membranes for the determination of Hg(II), Cd(II), Pb(II) and Cu(II) ions in solutions has been realised. The membrane-coating mixture used in the preparation of this new type of microsensors is incorporating PVC as supporting matrix, o-nitrophenyloctylether (o-NPOE) as solvent mediator and a recently synthesized Hg[dimethylglyoxime(phene)]2+ and Bis-(4-hydroxyacetophenone)-ethylenediamine as electroactive materials for Hg(II) and Cd(II), respectively. A set of three commercialised ionophores for Cd(II), Pb(II) and Cu(II) has been also used for comparison. Thin-film microsensors based on these membranes showed a Nernstian response of slope (26-30 mV/dec.) for the respective tested cations. The potentiometric response characteristics (linear range, pH range, detection limit and response time) are comparable with those obtained by conventional membranes as well as coated wire electrodes prepared from the same membrane. The realisation of the new organic membrane-based thin-film microsensors overcomes the problem of an insufficient selectivity of solid-state-based thinfilm sensors.
Microfabrication, characterization and analytical application of a new thin-film silver microsensor
(2009)
One of interesting but not well known water properties is related to appearance of highly ordered structures in response to strong electrical field. In 1893 Sir William Armstrong placed a cotton thread between two wine glasses filled with chemically pure water. When high DC voltage was applied between the glasses, a connection consisting of water formed, producing a "water bridge"
Optimization of the immobilization of bacterial spores on glass substrates with organosilanes
(2016)
A microscopic photometric method for measuring erythrocyte deformability. Artmann, Gerhard Michael
(1986)
Tests with palm tree leaves have just started yet and scan data are in the process to be analyzed. The final goal of future project for palm tree gender and species recognition will be to develop optical scanning technology to be applied to date palm tree leaves for in–situ screening purposes. Depending on the software used and the particular requirements of the users the technology potentially shall be able to identify palm tree diseases, palm tree gender, and species of young date palm trees by scanning leaves.
The ClearPET project
(2004)
The Crystal Clear Collaboration has designed and is building a high-resolution small animal PET scanner. The design is based on the use of the Hamamatsu R7600-M64 multi-anode photomultiplier tube and a LSO/LuYAP phoswich matrix with one to one coupling between the crystals and the photo-detector. The complete system will have 80 PM tubes in four rings with an inner diameter of 137 mm and an axial field of view of 110 mm. The PM pulses are digitized by free-running ADCs and digital data processing determines the gamma energy, the phoswich layer and even the pulse arrival time. Single gamma interactions are recorded and coincidences are found by software. The gantry allows rotation of the detector modules around the field of view. Simulations, and measurements a 2×4 module test set-up predict a spatial resolution of 1.5 mm in the centre of the field of view and a sensitivity of 5.9% for a point source in the centre of the field of view.
The propagation of mechanical waves in plates of isotropic elastic material is investigated. After a short introduction to the understanding of focussing of stress waves in a plate with a curved boundary the method of characteristics is applied to a plate of hyperelastic material. Using this method the propagation of acceleration waves is discussed. Based on this a numerical difference scheme is developed for solving initial-boundary-value problems and applied to two examples: propagation of a point disturbance in a homogeneously finitely strained non-linear elastic plate and geometrical focussing in al linear elastic plate.
The applicability of differential pulse voltammetry (DPV) and adsorptive stripping voltammetry (AdSV) at a non-toxic meniscus-modified silver solid amalgam electrode (m-AgSAE) for the determination of trace amounts of genotoxic substances was demonstrated on the determination of micromolar and submicromolar concentrations of 3-nitrofluoranthene using methanol - 0.01 mol L-1 NaOH (9:1) mixture as a base electrolyte and of Ostazine Orange using 0.01 mol L-1 NaOH as a base electrolyte.