The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 40 of 5586
Back to Result List

Gastrocnemius medialis contractile behavior is preserved during 30% body weight supported gait training

  • Rehabilitative body weight supported gait training aims at restoring walking function as a key element in activities of daily living. Studies demonstrated reductions in muscle and joint forces, while kinematic gait patterns appear to be preserved with up to 30% weight support. However, the influence of body weight support on muscle architecture, with respect to fascicle and series elastic element behavior is unknown, despite this having potential clinical implications for gait retraining. Eight males (31.9 ± 4.7 years) walked at 75% of the speed at which they typically transition to running, with 0% and 30% body weight support on a lower-body positive pressure treadmill. Gastrocnemius medialis fascicle lengths and pennation angles were measured via ultrasonography. Additionally, joint kinematics were analyzed to determine gastrocnemius medialis muscle–tendon unit lengths, consisting of the muscle's contractile and series elastic elements. Series elastic element length was assessed using a muscle–tendon unit model. Depending on whether data were normally distributed, a paired t-test or Wilcoxon signed rank test was performed to determine if body weight supported walking had any effects on joint kinematics and fascicle–series elastic element behavior. Walking with 30% body weight support had no statistically significant effect on joint kinematics and peak series elastic element length. Furthermore, at the time when peak series elastic element length was achieved, and on average across the entire stance phase, muscle–tendon unit length, fascicle length, pennation angle, and fascicle velocity were unchanged with respect to body weight support. In accordance with unchanged gait kinematics, preservation of fascicle–series elastic element behavior was observed during walking with 30% body weight support, which suggests transferability of gait patterns to subsequent unsupported walking.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Charlotte RichterORCiD, Bjoern Braunstein, Benjamin StäudleORCiD, Julia Attias, Alexander Suess, Tobias Weber, Katja N. Mileva, Joern Rittweger, David A. Green, Kirsten AlbrachtORCiD
DOI:https://doi.org/10.3389/fspor.2020.614559
ISSN:2624-9367
Parent Title (English):Frontiers in Sports and Active Living
Publisher:Frontiers
Place of publication:Lausanne
Document Type:Article
Language:English
Year of Completion:2021
Date of first Publication:2021/01/18
Date of the Publication (Server):2023/12/11
Tag:AlterG; gait; muscle fascicle behavior; rehabilitation; series elastic element behavior; ultrasound imaging; unloading; walking
Volume:2021
Issue:2
Length:Artikel 614559
Link:https://doi.org/10.3389/fspor.2020.614559
Zugriffsart:weltweit
Institutes:FH Aachen / Fachbereich Medizintechnik und Technomathematik
FH Aachen / IfB - Institut für Bioengineering
collections:Verlag / Frontiers
Licence (German):License LogoCreative Commons - Namensnennung