• Treffer 2 von 10
Zurück zur Trefferliste

Experimental and Numerical Study on Optimizing the Dry Low NOₓ Micromix Hydrogen Combustion Principle for Industrial Gas Turbine Applications

  • Combined with the use of renewable energy sources for its production, hydrogen represents a possible alternative gas turbine fuel for future low-emission power generation. Due to the difference in the physical properties of hydrogen compared to other fuels such as natural gas, well-established gas turbine combustion systems cannot be directly applied to dry low NOₓ (DLN) hydrogen combustion. The DLN micromix combustion of hydrogen has been under development for many years, since it has the promise to significantly reduce NOₓ emissions. This combustion principle for air-breathing engines is based on crossflow mixing of air and gaseous hydrogen. Air and hydrogen react in multiple miniaturized diffusion-type flames with an inherent safety against flashback and with low NOₓ emissions due to a very short residence time of the reactants in the flame region. The paper presents an advanced DLN micromix hydrogen application. The experimental and numerical study shows a combustor configuration with a significantly reduced number of enlarged fuel injectors with high-thermal power output at constant energy density. Larger fuel injectors reduce manufacturing costs, are more robust and less sensitive to fuel contamination and blockage in industrial environments. The experimental and numerical results confirm the successful application of high-energy injectors, while the DLN micromix characteristics of the design point, under part-load conditions, and under off-design operation are maintained. Atmospheric test rig data on NOₓ emissions, optical flame-structure, and combustor material temperatures are compared to numerical simulations and show good agreement. The impact of the applied scaling and design laws on the miniaturized micromix flamelets is particularly investigated numerically for the resulting flow field, the flame-structure, and NOₓ formation.

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Harald FunkeORCiD, Jan Keinz, Karsten Kusterer, Anis Haj Ayed, Masahide Kazari, Junichi Kitajima, Atsushi Horikawa, Kunio Okada
DOI:https://doi.org/10.1115/1.4034849
ISSN:1948-5093
Titel des übergeordneten Werkes (Englisch):Journal of Thermal Science and Engineering Applications
Verlag:ASME
Verlagsort:New York, NY
Dokumentart:Wissenschaftlicher Artikel
Sprache:Englisch
Erscheinungsjahr:2016
Datum der Publikation (Server):22.12.2016
Jahrgang:9
Ausgabe / Heft:2
Erste Seite:021001
Letzte Seite:021001-10
Bemerkung:
TSEA-15-1227
Link:https://doi.org/10.1115/1.4034849
Zugriffsart:bezahl
Fachbereiche und Einrichtungen:FH Aachen / Fachbereich Luft- und Raumfahrttechnik
collections:Verlag / American Society of Mechanical Engineers (ASME)