Exploratory analysis of chat-based black market profiles with natural language processing

  • Messenger apps like WhatsApp or Telegram are an integral part of daily communication. Besides the various positive effects, those services extend the operating range of criminals. Open trading groups with many thousand participants emerged on Telegram. Law enforcement agencies monitor suspicious users in such chat rooms. This research shows that text analysis, based on natural language processing, facilitates this through a meaningful domain overview and detailed investigations. We crawled a corpus from such self-proclaimed black markets and annotated five attribute types products, money, payment methods, user names, and locations. Based on each message a user sends, we extract and group these attributes to build profiles. Then, we build features to cluster the profiles. Pretrained word vectors yield better unsupervised clustering results than current state-of-the-art transformer models. The result is a semantically meaningful high-level overview of the user landscape of black market chatrooms. Additionally, the extracted structured information serves as a foundation for further data exploration, for example, the most active users or preferred payment methods.

Export metadata

Additional Services

Share in X Search Google Scholar
Metadaten
Author:André BüsgenORCiD, Lars KlöserORCiD, Philipp Kohl, Oliver Schmidts, Bodo Kraft, Albert Zündorf
DOI:https://doi.org/10.5220/0011271400003269
ISBN:978-989-758-583-8
ISSN:2184-285X
Parent Title (English):Proceedings of the 11th International Conference on Data Science, Technology and Applications
Document Type:Conference Proceeding
Language:English
Year of Completion:2022
Date of the Publication (Server):2022/07/29
Tag:Clustering; Information Extraction; Natural Language Processing; Profile Extraction; Text Mining
First Page:83
Last Page:94
Note:
11th International Conference on Data Science, Technology and Applications DATA - Volume 1, 83-94, 2022, Lisbon, Portugal
Link:https://doi.org/10.5220/0011271400003269
Zugriffsart:weltweit
Institutes:FH Aachen / Fachbereich Medizintechnik und Technomathematik
open_access (DINI-Set):open_access
Licence (German): Creative Commons - Namensnennung-Nicht kommerziell-Keine Bearbeitung