### Refine

#### Document Type

- Conference Proceeding (3)
- Article (2)

#### Language

- English (5) (remove)

#### Keywords

- shakedown analysis (5) (remove)

#### Institute

- Fachbereich Medizintechnik und Technomathematik (5) (remove)

Limit and shakedown theorems are exact theories of classical plasticity for the direct computation of safety factors or of the load carrying capacity under constant and varying loads. Simple versions of limit and shakedown analysis are the basis of all design codes for pressure vessels and pipings. Using Finite Element Methods more realistic modeling can be used for a more rational design. The methods can be extended to yield optimum plastic design. In this paper we present a first implementation in FE of limit and shakedown analyses for perfectly plastic material. Limit and shakedown analyses are done of a pipe–junction and a interaction diagram is calculated. The results are in good correspondence with the analytic solution we give in the appendix.

Abstracts of the ACHEMA 2000 - International Meeting on Chemical Engineering, Environmental Protection and Biotechnology, May 22 - 27, 2000. Frankfurt am Main. Achema 2000 : special edition / Linde. [Ed.: Linde AG. Red.: Volker R. Leski]. - Wiesbaden : Linde AG, 2000. - 56 p. : Ill., . - pp: 79 - 81

A procedure for the evaluation of the failure probability of elastic-plastic thin shell structures is presented. The procedure involves a deterministic limit and shakedown analysis for each probabilistic iteration which is based on the kinematical approach and the use the exact Ilyushin yield surface. Based on a direct definition of the limit state function, the non-linear problems may be efficiently solved by using the First and Second Order Reliabiblity Methods (Form/SORM). This direct approach reduces considerably the necessary knowledge of uncertain technological input data, computing costs and the numerical error. In: Computational plasticity / ed. by Eugenio Onate. Dordrecht: Springer 2007. VII, 265 S. (Computational Methods in Applied Sciences ; 7) (COMPLAS IX. Part 1 . International Center for Numerical Methods in Engineering (CIMNE)). ISBN 978-1-402-06576-7 S. 186-189

This work is an attempt to answer the question: How to use convex programming in shakedown analysis of structures made of materials with temperature-dependent properties. Based on recently established shakedown theorems and formulations, a dual relationship between upper and lower bounds of the shakedown limit load is found, an algorithmfor shakedown analysis is proposed. While the original problem is neither convex nor concave, the algorithm presented here has the advantage of employing convex programming tools.

The load-carrying capacity or the safety against plastic limit states are the central questions in the design of structures and passive components in the apparatus engineering. A precise answer is most simply given by limit and shakedown analysis. These methods can be based on static and kinematic theorems for lower and upper bound analysis. Both may be formulated as optimization problems for finite element discretizations of structures. The problems of large-scale analysis and the extension towards realistic material modelling will be solved in a European research project. Limit and shakedown analyses are briefly demonstrated with illustrative examples.