Refine
Year of publication
Institute
- Fachbereich Bauingenieurwesen (711) (remove)
Document Type
- Article (333)
- Conference Proceeding (139)
- Book (118)
- Part of a Book (86)
- Report (19)
- Doctoral Thesis (6)
- Contribution to a Periodical (2)
- Course Material (2)
- Patent (2)
- Working Paper (2)
Keywords
- Kanalisation (4)
- Wasserbau (4)
- Wasserwirtschaft (4)
- metal structure (4)
- steel (4)
- Aachen / Fachhochschule Aachen / Fachbereich Bauingenieurwesen (3)
- Absolvententreffen (3)
- Alfha.net (3)
- Alumni (3)
- Fließgewässer (3)
The replacement of existing spillway crests or gates with labyrinth weirs is a proven techno-economical means to increase the discharge capacity when rehabilitating existing structures. However, additional information is needed regarding energy dissipation of such weirs, since due to the folded weir crest, a three-dimensional flow field is generated, yielding more complex overflow and energy dissipation processes. In this study, CFD simulations of labyrinth weirs were conducted 1) to analyze the discharge coefficients for different discharges to compare the Cd values to literature data and 2) to analyze and improve energy dissipation downstream of the structure. All tests were performed for a structure at laboratory scale with a height of approx. P = 30.5 cm, a ratio of the total crest length to the total width of 4.7, a sidewall angle of 10° and a quarter-round weir crest shape. Tested headwater ratios were 0.089 ≤ HT/P ≤ 0.817. For numerical simulations, FLOW-3D Hydro was employed, solving the RANS equations with use of finite-volume method and RNG k-ε turbulence closure. In terms of discharge capacity, results were compared to data from physical model tests performed at the Utah Water Research Laboratory (Utah State University), emphasizing higher discharge coefficients from CFD than from the physical model. For upstream heads, some discrepancy in the range of ± 1 cm between literature, CFD and physical model tests was identified with a discussion regarding differences included in the manuscript. For downstream energy dissipation, variable tailwater depths were considered to analyze the formation and sweep-out of a hydraulic jump. It was found that even for high discharges, relatively low downstream Froude numbers were obtained due to high energy dissipation involved by the three-dimensional flow between the sidewalls. The effects of some additional energy dissipation devices, e.g. baffle blocks or end sills, were also analyzed. End sills were found to be non-effective. However, baffle blocks with different locations may improve energy dissipation downstream of labyrinth weirs.
Non-intrusive measuring techniques have attained a lot of interest in relation to both hydraulic modeling and prototype applications. Complimenting acoustic techniques, significant progress has been made for the development of new optical methods. Computer vision techniques can help to extract new information, e. g. high-resolution velocity and depth data, from videos captured with relatively inexpensive, consumer-grade cameras. Depth cameras are sensors providing information on the distance between the camera and observed features. Currently, sensors with different working principles are available. Stereoscopic systems reference physical image features (passive system) from two perspectives; in order to enhance the number of features and improve the results, a sensor may also estimate the disparity from a detected light to its original projection (active stereo system). In the current study, the RGB-D camera Intel RealSense D435, working on such stereo vision principle, is used in different, typical hydraulic modeling applications. All tests have been conducted at the Utah Water Research Laboratory. This paper will demonstrate the performance and limitations of the RGB-D sensor, installed as a single camera and as camera arrays, applied to 1) detect the free surface for highly turbulent, aerated hydraulic jumps, for free-falling jets and for an energy dissipation basin downstream of a labyrinth weir and 2) to monitor local scours upstream and downstream of a Piano Key Weir. It is intended to share the authors’ experiences with respect to camera settings, calibration, lightning conditions and other requirements in order to promote this useful, easily accessible device. Results will be compared to data from classical instrumentation and the literature. It will be shown that even in difficult application, e. g. the detection of a highly turbulent, fluctuating free-surface, the RGB-D sensor may yield similar accuracy as classical, intrusive probes.
This thesis aims at the presentation and discussion of well-accepted and new
imaging techniques applied to different types of flow in common hydraulic
engineering environments. All studies are conducted in laboratory conditions and
focus on flow depth and velocity measurements. Investigated flows cover a wide
range of complexity, e.g. propagation of waves, dam-break flows, slightly and fully
aerated spillway flows as well as highly turbulent hydraulic jumps.
Newimagingmethods are compared to different types of sensorswhich are frequently
employed in contemporary laboratory studies. This classical instrumentation as well
as the general concept of hydraulic modeling is introduced to give an overview on
experimental methods.
Flow depths are commonly measured by means of ultrasonic sensors, also known as
acoustic displacement sensors. These sensors may provide accurate data with high
sample rates in case of simple flow conditions, e.g. low-turbulent clear water flows.
However, with increasing turbulence, higher uncertainty must be considered.
Moreover, ultrasonic sensors can provide point data only, while the relatively large
acoustic beam footprint may lead to another source of uncertainty in case of
relatively short, highly turbulent surface fluctuations (ripples) or free-surface
air-water flows. Analysis of turbulent length and time scales of surface fluctuations
from point measurements is also difficult. Imaging techniques with different
dimensionality, however, may close this gap. It is shown in this thesis that edge
detection methods (known from computer vision) may be used for two-dimensional
free-surface extraction (i.e. from images taken through transparant sidewalls in
laboratory flumes). Another opportunity in hydraulic laboratory studies comes with
the application of stereo vision. Low-cost RGB-D sensors can be used to gather
instantaneous, three-dimensional free-surface elevations, even in flows with very
high complexity (e.g. aerated hydraulic jumps). It will be shown that the uncertainty
of these methods is of similar order as for classical instruments.
Particle Image Velocimetry (PIV) is a well-accepted and widespread imaging
technique for velocity determination in laboratory conditions. In combination with
high-speed cameras, PIV can give time-resolved velocity fields in 2D/3D or even as
volumetric flow fields. PIV is based on a cross-correlation technique applied to small
subimages of seeded flows. The minimum size of these subimages defines the
maximum spatial resolution of resulting velocity fields. A derivative of PIV for
aerated flows is also available, i.e. the so-called Bubble Image Velocimetry (BIV). This
thesis emphasizes the capacities and limitations of both methods, using relatively
simple setups with halogen and LED illuminations. It will be demonstrated that
PIV/BIV images may also be processed by means of Optical Flow (OF) techniques.
OF is another method originating from the computer vision discipline, based on the
assumption of image brightness conservation within a sequence of images. The
Horn-Schunck approach, which has been first employed to hydraulic engineering
problems in the studies presented herein, yields dense velocity fields, i.e. pixelwise
velocity data. As discussed hereinafter, the accuracy of OF competes well with PIV
for clear-water flows and even improves results (compared to BIV) for aerated flow
conditions. In order to independently benchmark the OF approach, synthetic images
with defined turbulence intensitiy are used.
Computer vision offers new opportunities that may help to improve the
understanding of fluid mechanics and fluid-structure interactions in laboratory
investigations. In prototype environments, it can be employed for obstacle detection
(e.g. identification of potential fish migration corridors) and recognition (e.g. fish
species for monitoring in a fishway) or surface reconstruction (e.g. inspection of
hydraulic structures). It can thus be expected that applications to hydraulic
engineering problems will develop rapidly in near future. Current methods have not
been developed for fluids in motion. Systematic future developments are needed to
improve the results in such difficult conditions.
In der wasserbaulichen Forschung werden neben klassischen Messinstrumenten zunehmend kamerabasierte Verfahren genutzt. Diese erlauben neben der Bestimmung von Fließgeschwindigkeiten auch die Detektion der freien Wasseroberfläche oder zeitliche Vermessung von Kolken. Durch die hohen räumlichen und zeitlichen Auflösungen, welche neueste Kamerasensoren liefern, können neue Erkenntnisse in turbulenten, komplexen Strömungen gewonnen werden. Auch in der Praxis können diese Verfahren mit geringem Aufwand wichtige Daten liefern.
The low-pressure system Bernd involved extreme rainfalls in the Western part of Germany in July 2021,
resulting in major floods, severe damages and a tremendous number of casualties. Such extreme events
are rare and full flood protection can never be ensured with reasonable financial means. But still, this
event must be starting point to reconsider current design concepts. This article aims at sharing some
thoughts on potential hazards, the selection of return periods and remaining risk with the focus on Germany.
Kein Bauvorhaben sollte realisiert werden, ohne dass es auf einer vertraglichen Grundlage zwischen Auftraggeber und Auftragnehmer fußt. Diese vertragliche Grundlage zu kennen ist essenziell, um dementsprechend handeln zu können. Denn nur wer seine eigenen Rechte und auch Pflichten kennt, kann sich auf diese berufen.
Baumaschinen
(2024)
Durch die Einführung von Building Information Modeling (BIM) sowohl projektspezifisch als auch in ganze Unternehmungen hat die Baubranche einen weitreichenden Veränderungsprozess angestoßen.
Building Information Modeling kann als eine Methode angesehen werden, um die Informationsasymmetrien zwischen den Projektbeteiligten so gering wie möglich zu halten.