Refine
Year of publication
Institute
- Fachbereich Medizintechnik und Technomathematik (2081) (remove)
Document Type
- Article (1596)
- Conference Proceeding (243)
- Book (97)
- Part of a Book (62)
- Doctoral Thesis (28)
- Patent (17)
- Report (15)
- Other (9)
- Habilitation (4)
- Lecture (3)
Keywords
- Biosensor (25)
- Finite-Elemente-Methode (16)
- CAD (15)
- civil engineering (14)
- Bauingenieurwesen (13)
- Einspielen <Werkstoff> (13)
- shakedown analysis (9)
- FEM (6)
- Limit analysis (6)
- Shakedown analysis (6)
Metathese von Ölsäure und Derivaten ist ein interessanter Weg für die Synthese bifunktioneller Verbindungen aus nachwachsenden Rohstoffen. Verwendet wurden Ru-Katalysatoren der zweiten Generation, welche eine hohe Toleranz gegenüber funktionellen Gruppen und Verunreinigungen aufweisen. Trotz des Einsatzes technischer Edukte waren Umsetzungen mit niedrigen Katalysatormengen (0.001 – 0.01 mol-%) möglich, mit Ausbeuten entsprechend der Literatur. Kreuzmetathesen ermöglichten variable Kettenlängen und Funktionalitäten der Monomere, die Produktgewinnung ist jedoch aufwändig. Selbstmetathese lieferte C18-bifunktionelle Verbindungen, welche einfach durch Destillation oder Kristallisation isoliert werden können. Neben der katalystischen Umsetzung wurde auch die Produktgewinnung untersucht und für ausgewählte Produkte auch im größeren Maßstab durchgeführt.
Self metathesis of oleochemicals offers a variety of bifunctional compounds, that can be used as monomer for polymer production. Many precursors are in huge scales available, like oleic acid ester (biodiesel), oleyl alcohol (tensides), oleyl amines (tensides, lubricants). We show several ways to produce and separate and purify C18-α,ω-bifunctional compounds, using Grubbs 2nd Generation catalysts, starting from technical grade educts.
Die Bereitstellung von nachhaltig erzeugtem Wasserstoff als Energieträger und Rohstoff ist eine wichtige Schlüsseltechnologie sowohl als Ersatz für fossile Energieträger, aber auch als Produkt im Zusammenhang mit Kreislaufprozessen. In der Abwasserbehandlung bestehen verschiedene Möglichkeiten Wasserstoff herzustellen. Mehrere Wege, mögliche Synergien, aber auch deren Nachteile werden vorgestellt.
In the research domain of energy informatics, the importance of open datais rising rapidly. This can be seen as various new public datasets are created andpublished. Unfortunately, in many cases, the data is not available under a permissivelicense corresponding to the FAIR principles, often lacking accessibility or reusability.Furthermore, the source format often differs from the desired data format or does notmeet the demands to be queried in an efficient way. To solve this on a small scale atoolbox for ETL-processes is provided to create a local energy data server with openaccess data from different valuable sources in a structured format. So while the sourcesitself do not fully comply with the FAIR principles, the provided unique toolbox allows foran efficient processing of the data as if the FAIR principles would be met. The energydata server currently includes information of power systems, weather data, networkfrequency data, European energy and gas data for demand and generation and more.However, a solution to the core problem - missing alignment to the FAIR principles - isstill needed for the National Research Data Infrastructure.
Due to the transition to renewable energies, electricity markets need to be made fit for purpose. To enable the comparison of different energy market designs, modeling tools covering market actors and their heterogeneous behavior are needed. Agent-based models are ideally suited for this task. Such models can be used to simulate and analyze changes to market design or market mechanisms and their impact on market dynamics. In this paper, we conduct an evaluation and comparison of two actively developed open-source energy market simulation models. The two models, namely AMIRIS and ASSUME, are both designed to simulate future energy markets using an agent-based approach. The assessment encompasses modelling features and techniques, model performance, as well as a comparison of model results, which can serve as a blueprint for future comparative studies of simulation models. The main comparison dataset includes data of Germany in 2019 and simulates the Day-Ahead market and participating actors as individual agents. Both models are comparable close to the benchmark dataset with a MAE between 5.6 and 6.4 €/MWh while also modeling the actual dispatch realistically.
We conducted a scoping review for active learning in the domain of natural language processing (NLP), which we summarize in accordance with the PRISMA-ScR guidelines as follows:
Objective: Identify active learning strategies that were proposed for entity recognition and their evaluation environments (datasets, metrics, hardware, execution time).
Design: We used Scopus and ACM as our search engines. We compared the results with two literature surveys to assess the search quality. We included peer-reviewed English publications introducing or comparing active learning strategies for entity recognition.
Results: We analyzed 62 relevant papers and identified 106 active learning strategies. We grouped them into three categories: exploitation-based (60x), exploration-based (14x), and hybrid strategies (32x). We found that all studies used the F1-score as an evaluation metric. Information about hardware (6x) and execution time (13x) was only occasionally included. The 62 papers used 57 different datasets to evaluate their respective strategies. Most datasets contained newspaper articles or biomedical/medical data. Our analysis revealed that 26 out of 57 datasets are publicly accessible.
Conclusion: Numerous active learning strategies have been identified, along with significant open questions that still need to be addressed. Researchers and practitioners face difficulties when making data-driven decisions about which active learning strategy to adopt. Conducting comprehensive empirical comparisons using the evaluation environment proposed in this study could help establish best practices in the domain.
Subglacial environments on Earth offer important analogs to Ocean World targets in our solar system. These unique microbial ecosystems remain understudied due to the challenges of access through thick glacial ice (tens to hundreds of meters). Additionally, sub-ice collections must be conducted in a clean manner to ensure sample integrity for downstream microbiological and geochemical analyses. We describe the field-based cleaning of a melt probe that was used to collect brine samples from within a glacier conduit at Blood Falls, Antarctica, for geomicrobiological studies. We used a thermoelectric melting probe called the IceMole that was designed to be minimally invasive in that the logistical requirements in support of drilling operations were small and the probe could be cleaned, even in a remote field setting, so as to minimize potential contamination. In our study, the exterior bioburden on the IceMole was reduced to levels measured in most clean rooms, and below that of the ice surrounding our sampling target. Potential microbial contaminants were identified during the cleaning process; however, very few were detected in the final englacial sample collected with the IceMole and were present in extremely low abundances (∼0.063% of 16S rRNA gene amplicon sequences). This cleaning protocol can help minimize contamination when working in remote field locations, support microbiological sampling of terrestrial subglacial environments using melting probes, and help inform planetary protection challenges for Ocean World analog mission concepts.
Methane is a valuable energy source helping to mitigate the growing energy demand worldwide. However, as a potent greenhouse gas, it has also gained additional attention due to its environmental impacts. The biological production of methane is performed primarily hydrogenotrophically from H2 and CO2 by methanogenic archaea. Hydrogenotrophic methanogenesis also represents a great interest with respect to carbon re-cycling and H2 storage. The most significant carbon source, extremely rich in complex organic matter for microbial degradation and biogenic methane production, is coal. Although interest in enhanced microbial coalbed methane production is continuously increasing globally, limited knowledge exists regarding the exact origins of the coalbed methane and the associated microbial communities, including hydrogenotrophic methanogens. Here, we give an overview of hydrogenotrophic methanogens in coal beds and related environments in terms of their energy production mechanisms, unique metabolic pathways, and associated ecological functions.