Refine
Year of publication
Institute
- IfB - Institut für Bioengineering (692) (remove)
Document Type
- Article (452)
- Conference Proceeding (152)
- Part of a Book (37)
- Doctoral Thesis (20)
- Report (10)
- Book (8)
- Lecture (3)
- Other (3)
- Habilitation (2)
- Patent (2)
Keywords
- Finite-Elemente-Methode (7)
- Limit analysis (6)
- Clusterion (5)
- Shakedown analysis (5)
- solar sail (5)
- Air purification (4)
- Einspielen <Werkstoff> (4)
- Hämoglobin (4)
- Lipopolysaccharide (4)
- Luftreiniger (4)
- Plasmacluster ion technology (4)
- Raumluft (4)
- Sonde (4)
- CellDrum (3)
- Eisschicht (3)
- GOSSAMER-1 (3)
- Kohlenstofffaser (3)
- MASCOT (3)
- Technische Mechanik (3)
- lipopolysaccharides (3)
- shakedown analysis (3)
- Analytischer Zulaessigkeitsnachweis (2)
- Biocomposites (2)
- Bruchmechanik (2)
- Einspiel-Analyse (2)
- Erythrozyt (2)
- FEM (2)
- Fibroblast (2)
- Iterative learning control (2)
- Mars (2)
- Natural fibres (2)
- Pflanzenphysiologie (2)
- Pflanzenscanner (2)
- Polymer-matrix composites (2)
- Shakedown (2)
- Solar sail (2)
- Spacecraft (2)
- Stickstoffmonoxid (2)
- Stiffness (2)
- Stress concentrations (2)
- Trajectory Optimization (2)
- bacterial cellulose (2)
- biopotential electrodes (2)
- carbonized rice husk (2)
- celldrum technology (2)
- damage (2)
- locomotion (2)
- multiple NEA rendezvous (2)
- muscle fascicle behavior (2)
- nanostructured carbonized plant parts (2)
- nanostrukturierte carbonisierte Pflanzenteile (2)
- nitric oxide gas (2)
- plant scanner (2)
- prebiotic (2)
- ratchetting (2)
- shakedown (2)
- small spacecraft (2)
- ultrasound (2)
- ultrasound imaging (2)
- Achilles tendon (1)
- Adaptive control (1)
- Adsorption (1)
- Ageing (1)
- AlterG (1)
- Alternating plasticity (1)
- Alzheimer's disease (1)
- Analysis (1)
- Anastomose (1)
- Anastomosis (1)
- Anastomotic leakage (1)
- Anatomy (1)
- Annulus Fibrosus (1)
- Antarctic Glaciology (1)
- Antarctica (1)
- Architectural gear ratio (1)
- Arthosetherapie (1)
- Assistive technology (1)
- Asteroid Deflection (1)
- Attitude dynamics (1)
- Aufschlagversuch (1)
- Autofluoreszenzverfahren (1)
- Autolysis (1)
- Automated Optimization (1)
- Automatic control (1)
- Axialbelastung (1)
- Axially cracked pipe (1)
- Bacillus sp (1)
- Bacterial cellulose (1)
- Bakterien (1)
- Biomechanical simulation (1)
- Biomechanics (1)
- Biomechanik (1)
- Biomedizinische Technik (1)
- Bioreaktor (1)
- Biosolubilization (1)
- Bladder (1)
- Blutzellenlagerung (1)
- Bone quality and biomechanics (1)
- Bone sawing (1)
- Carbon sources (1)
- Cardiac myocytes (1)
- Cardiac tissue (1)
- Cell permeability (1)
- Cellular force (1)
- Cellulose nanostructure (1)
- Cement infiltration (1)
- Cementoblast (1)
- Chance constrained programming (1)
- Circular Dichroism (1)
- Coal (1)
- Coefficient of ocular rigidity (1)
- Collagen fibrils (1)
- Compression (1)
- Computational biomechanics (1)
- Connective tissues (1)
- Constitutive model (1)
- Contractile tension (1)
- Corneo-scleral shell (1)
- Cost-effectiveness (1)
- Culture media (1)
- DLR-ESTEC GOSSAMER roadmap for solar sailing (1)
- Damage mechanics theory (1)
- Dattel (1)
- Decomposition (1)
- Deformation (1)
- Dekontamination (1)
- Design-by-analysis (1)
- Differential tonometry (1)
- Disc Degeneration (1)
- Discontinuous fractures (1)
- Distorsion des oberen Sprunggelenks (1)
- Druckbeanspruchung (1)
- Druckbehälter (1)
- Druckbelastung (1)
- Drug simulation (1)
- Dry surfaces (1)
- EEG (1)
- ES-FEM (1)
- Einspiel-Kriterium (1)
- Einspielen (1)
- Elastostatics (1)
- Electromechanical modeling (1)
- Elektrodynamik (1)
- End-to-end colorectal anastomosis (1)
- Endothelial cells (1)
- Endothelial dysfunction (1)
- Endothelzelle (1)
- Environmental impact (1)
- Epithel (1)
- Evolution of damage (1)
- Evolutionary Neurocontrol (1)
- Exact Ilyushin yield surface (1)
- Experiment (1)
- Extension fracture (1)
- Extension strain criterion (1)
- External knee adduction moments (1)
- Extracellular matrix (ECM) (1)
- Extraterrestrial Glaciology (1)
- Eyeball (1)
- FGF23 (1)
- FS-FEM (1)
- Fehlerstellen (1)
- Finite element analysis (1)
- Finite element analysis (FEA) (1)
- Finite element method (1)
- Finite element modelling (1)
- First Order Reliabiblity Method (1)
- First-order reliability method (1)
- Fließgrenze (1)
- Force (1)
- Forces (1)
- Fracture configuration (1)
- Fracture simulation (1)
- Freeze–thaw process (1)
- Frequency adaption (1)
- Fußball (1)
- Geriatric (1)
- Glaciological instruments and methods (1)
- Glaucoma (1)
- Global and local collapse (1)
- Gonarthrose (1)
- Gossamer (1)
- Gossamer structures (1)
- Grenzwertberechnung (1)
- Growth modelling (1)
- H2 (1)
- Haemodialysis (1)
- Handbike (1)
- Harnleiter (1)
- Heart tissue culture (1)
- Hemoglobin structure (1)
- Hip fractures (1)
- Hodgkin–Huxley models (1)
- Homogenization (1)
- Human-Computer interaction (1)
- Hybrid Propellants (1)
- Hydrodynamik (1)
- Hydrogel (1)
- Hydrogenotrophic methanogens (1)
- Hämoglobinstruktur (1)
- Ice melting probe (1)
- Ice penetration (1)
- Icy moons (1)
- Impedance Spectroscopy (1)
- Induced pluripotent stem cells (1)
- Inotropic compounds (1)
- Interplanetary flight (1)
- Interstellar objects (1)
- Intervertebral Disc (1)
- Intradiscal Pressure (1)
- Inverse dynamic problem (1)
- Inverse kinematic problem (1)
- Ion channels (1)
- Jupiter (1)
- Kinematics (1)
- Kinetics (1)
- Klotho (1)
- Knee (1)
- Kniegelenkarthrose (1)
- Knochen (1)
- Knochenbildung (1)
- Knochenchirugie (1)
- Knochendichte (1)
- Körpertemperatur (1)
- LPS (1)
- Lactobacillus rhamnosus GG (1)
- Lichtstreuungsbasierte Instrumente (1)
- Liver (1)
- Load modeling (1)
- Long COVID (1)
- Low-Thrust Propulsion (1)
- MBST (1)
- Machine learning (1)
- Manipulated variables (1)
- Mechanical simulation (1)
- Mechanical stability (1)
- Mechanics (1)
- Mechanische Beanspruchung (1)
- Mechanotransduction (1)
- Medusomyces gisevi (1)
- Methane (1)
- Methanogenesis (1)
- Microbial adhesion (1)
- Microcirculation (1)
- Mild cognitive impairment (1)
- Missions (1)
- Mohr–Coulomb criterion (1)
- Multimode failure (1)
- Multiphase (1)
- Muscle (1)
- Muscle Fascicle (1)
- Muscle Force (1)
- Muscle fibers (1)
- Musculoskeletal model (1)
- Musculoskeletal system (1)
- Myocardial infarction and cardiac death (1)
- NONOate (1)
- Natriumhypochlorit (1)
- Niacin (1)
- Nitric Oxide (1)
- Nitric Oxide Donor (1)
- Non-linear optimization (1)
- Non-parallel fissures (1)
- Nucleus Pulposus (1)
- Ocean worlds (1)
- Ocular blood flow (1)
- Orbital dynamics (1)
- Organkultur (1)
- Osteoporose (1)
- Osteoporosis (1)
- PFM (1)
- PHILAE (1)
- PTH (1)
- Paralympic sport (1)
- Passive stretching (1)
- Pelvic floor dysfunction (1)
- Pelvic muscle (1)
- Permeability (1)
- Permeabilität (1)
- Pflanzenstress (1)
- Pharmacology (1)
- Phosphate (1)
- Physiology (1)
- Planetary Protection (1)
- Planetary exploration (1)
- Plastizität (1)
- Post-COVID-19 syndrome (1)
- Pressure loaded crack-face (1)
- Pressure-volume relationship (1)
- Prevention (1)
- Progressive plastic deformation (1)
- Prophylaxis (1)
- Proteine (1)
- Proximal humerus fracture (1)
- Pulsations (1)
- RVA (1)
- Random variable (1)
- Ratcheting (1)
- Ratchetting (1)
- Recombinant activated protein C (1)
- Reconstruction (1)
- Red blood cell storage (1)
- Rehabilitation Technology and Prosthetics (1)
- Rehabilitation engineering (1)
- Reliability analysis (1)
- Reliability of structures (1)
- Retinal vessel analysis (1)
- Retinal vessels (1)
- Reusable Rocket Engines (1)
- Riboflavin (1)
- Robotic rehabilitation (1)
- Rohr (1)
- Rohrbruch (1)
- Rotator cuff (1)
- Running (1)
- S-FEM (1)
- Sampling methods (1)
- Schienbeinschoner (1)
- Schwammknochen (1)
- Sensitivity (1)
- Sepsis (1)
- Septic cardiomyopathy (1)
- Sequence-Search (1)
- Shakedown criterion (1)
- Simulation (1)
- Skeletal muscle (1)
- Sleep EEG (1)
- Small Aral Sea (1)
- Small Solar System Body Lander (1)
- Small Spacecraft (1)
- Small spacecraft (1)
- Solar Power Sail (1)
- Solar Sail (1)
- Spacecraft Trajectory Optimization (1)
- Spleen (1)
- Sprunggelenkorthesen (1)
- Stahl (1)
- Statics (1)
- Stochastic programming (1)
- Strukturanalyse (1)
- Subclacial exploration (1)
- Subglacial lakes (1)
- SunRav BookEditor (1)
- Surface microorganisms (1)
- Surgical Navigation and Robotics (1)
- Surgical staplers (1)
- Swabbing (1)
- Tapered ends (1)
- Temperaturabhängigkeit (1)
- Tendon Rupture (1)
- Tendon properties (1)
- Tendons (1)
- Tension (1)
- Thiamine (1)
- Tissue Engineering (1)
- Traglastanalyse (1)
- Training (1)
- Trajectories (1)
- Ultrasound (1)
- Uniaxial compression test (1)
- Ureter (1)
- Variable height stapler design (1)
- Vascular response (1)
- Vasomotions (1)
- Vertebroplastie (1)
- Vertebroplasty (1)
- Viscous flow (1)
- Viskose Strömung (1)
- Viskosität (1)
- Visual field asymmetry (1)
- Vitamin A (1)
- Vitamin B (1)
- Vitamin D (1)
- Wasserbrücke (1)
- Wasserstoffperoxid (1)
- Wolff's Law (1)
- Wolffsches Gesetz (1)
- Wundheilung (1)
- Zug-Druck Belastung (1)
- achilles tendon (1)
- actin cytoskeleton (1)
- activated nanostructured carbon (1)
- adipose-derived stromal cells (ASCs) (1)
- adsorption (1)
- agility (1)
- aktivierte nanostrukturierte Kohlenstofffaser (1)
- alternierend Verformbarkeit (1)
- anaesthetic complications (1)
- anisotropy (1)
- ankle braces (1)
- ankle sprain (1)
- aortic perfusion (1)
- arthrosis therapy (1)
- asteroid lander (1)
- asteroid sample return (1)
- attitude dynamics (1)
- autofluorescence-based detection system (1)
- biaxial tensile experiment (1)
- biofilms (1)
- biomechanics (1)
- bone density (1)
- bone structure (1)
- burst pressure (1)
- burst tests (1)
- cancellous bone (1)
- cardiomyocyte biomechanics (1)
- cell aerosolization (1)
- cell atomization (1)
- cerebral small vessel disease (1)
- chance constrained programming (1)
- coculture (1)
- cognitive impairment (1)
- community dwelling (1)
- computational fluid dynamics analysis (1)
- connective tissue (1)
- constitutive modeling (1)
- constructive alignment (1)
- contractile tension (1)
- correlation (1)
- crop yield (1)
- cytosolic water diffusion (1)
- date palm tree (1)
- dental trauma (1)
- design-by-analysis (1)
- dialysis (1)
- difficult airway (1)
- distance learning (1)
- distorted element (1)
- double-lumen tube intubation (1)
- drop jump (1)
- e-books (1)
- e-issues (1)
- ecological structure (1)
- electromyography (1)
- endoluminal (1)
- energy absorption (1)
- energy dissipation (1)
- epithelization (1)
- examination (1)
- exopolysaccharides (1)
- extracorporeal membrane oxygenation (1)
- fibulare Bandruptur (1)
- finite element analysis (1)
- flaw (1)
- flotilla missions (1)
- force generation (1)
- forehead EEG (1)
- fortschreitende plastische Deformation (1)
- gait (1)
- gonarthrosis (1)
- habitability (1)
- healthy aging (1)
- heliosphere (1)
- hemoglobin (1)
- hemoglobin dynamics (1)
- hiPS cardiomyocytes (1)
- high-intensity exercise (1)
- human dermal fibroblasts (1)
- humic acid (1)
- hydrogel (1)
- hyper-gravity (1)
- hyperelastic (1)
- hypo-gravity (1)
- ice moons (1)
- icy moons (1)
- immobilization (1)
- impedance spectroscopy (1)
- in-ear EEG (1)
- intraclass correlation coefficient (1)
- ion propulsion (1)
- kontraktile Spannung (1)
- life detection (1)
- light scattering analysis (1)
- lignite (1)
- limit analysis (1)
- limit and shakedown analysis (1)
- linear kinematic hardening (1)
- lipopolysaccharide (1)
- load limit (1)
- long-term retention (1)
- low-rank coal (1)
- low-thrust (1)
- low-thrust trajectory optimization (1)
- material shakedown (1)
- mechanical buffer (1)
- metagenomics (1)
- microbial diversity (1)
- multimodal (1)
- muscle mechanics (1)
- near-Earth asteroid (1)
- non-simplex S-FEM elements (1)
- nonlinear kinematic hardening (1)
- orbit control (1)
- orbital dynamics (1)
- overload (1)
- parabolic flight (1)
- performance testing (1)
- physiology (1)
- pipes (1)
- planetary defence (1)
- plant stress (1)
- plasma generated ions (1)
- practical learning (1)
- prevention (1)
- probabilistic fracture mechanics (1)
- protein (1)
- psychosocial (1)
- pullulan (1)
- rehabilitation (1)
- reliability of structures (1)
- responsive space (1)
- retinal microvasculature (1)
- retinal vessels (1)
- rhAPC (1)
- running (1)
- rupture of the fibular ligament (1)
- sEMG (1)
- sailcraft (1)
- sample return (1)
- sarcomere operating length (1)
- second-order reliability method (1)
- sensors (1)
- series elastic element behavior (1)
- shotgun sequencing (1)
- shoulder (1)
- simulation (1)
- small solar system body characterisation (1)
- small spacecraft asteroid lander (1)
- small spacecraft solar sail (1)
- smooth muscle contraction (1)
- softs (1)
- soil amendment (1)
- soil health (1)
- soil remediation (1)
- solar sails (1)
- solar system (1)
- space missions (1)
- sprint start (1)
- standard error of measurement (1)
- stiffness (1)
- stochastic programming (1)
- strain energy function (1)
- stretch reflex (1)
- stretch-shortening cycle (1)
- subglacial aquatic ecosystems (1)
- subsurface ice (1)
- subsurface ice research (1)
- subsurface probe (1)
- surface modification (1)
- survival (1)
- system engineering (1)
- tendon rupture (1)
- tension–torsion loading (1)
- test-retest reliability (1)
- training simulator (1)
- tri-lineage differentiation (1)
- twin-fluid atomizer (1)
- ultrasonography (1)
- underwater vehicle (1)
- unloading (1)
- vessels (1)
- videolaryngoscopy (1)
- virgin passive (1)
- virtual reality (1)
- viscoelasticity (1)
- walking (1)
- walking gait (1)
- water bridge phenomenon (1)
- wound healing (1)
- yield stress (1)
Purpose: Impaired paravascular drainage of β-Amyloid (Aβ) has been proposed as a contributing cause for sporadic Alzheimer’s disease (AD), as decreased cerebral blood vessel pulsatility and subsequently reduced propulsion in this pathway could lead to the accumulation and deposition of Aβ in the brain. Therefore, we hypothesized that there is an increased impairment in pulsatility across AD spectrum.
Patients and Methods: Using transcranial color-coded duplex sonography (TCCS) the resistance and pulsatility index (RI; PI) of the middle cerebral artery (MCA) in healthy controls (HC, n=14) and patients with AD dementia (ADD, n=12) were measured. In a second step, we extended the sample by adding patients with mild cognitive impairment (MCI) stratified by the presence (MCI-AD, n=8) or absence of biomarkers (MCI-nonAD, n=8) indicative for underlying AD pathology, and compared RI and PI across the groups. To control for atherosclerosis as a confounder, we measured the arteriolar-venular-ratio of retinal vessels.
Results: Left and right RI (p=0.020; p=0.027) and left PI (p=0.034) differed between HC and ADD controlled for atherosclerosis with AUCs of 0.776, 0.763, and 0.718, respectively. The RI and PI of MCI-AD tended towards ADD, of MCI-nonAD towards HC, respectively. RIs and PIs were associated with disease severity (p=0.010, p=0.023).
Conclusion: Our results strengthen the hypothesis that impaired pulsatility could cause impaired amyloid clearance from the brain and thereby might contribute to the development of AD. However, further studies considering other factors possibly influencing amyloid clearance as well as larger sample sizes are needed.
Purpose: A precise determination of the corneal diameter is essential for the diagnosis of various ocular diseases, cataract and refractive surgery as well as for the selection and fitting of contact lenses. The aim of this study was to investigate the agreement between two automatic and one manual method for corneal diameter determination and to evaluate possible diurnal variations in corneal diameter.
Patients and Methods: Horizontal white-to-white corneal diameter of 20 volunteers was measured at three different fixed times of a day with three methods: Scheimpflug method (Pentacam HR, Oculus), placido based topography (Keratograph 5M, Oculus) and manual method using an image analysis software at a slitlamp (BQ900, Haag-Streit).
Results: The two-factorial analysis of variance could not show a significant effect of the different instruments (p = 0.117), the different time points (p = 0.506) and the interaction between instrument and time point (p = 0.182). Very good repeatability (intraclass correlation coefficient ICC, quartile coefficient of dispersion QCD) was found for all three devices. However, manual slitlamp measurements showed a higher QCD than the automatic measurements with the Keratograph 5M and the Pentacam HR at all measurement times.
Conclusion: The manual and automated methods used in the study to determine corneal diameter showed good agreement and repeatability. No significant diurnal variations of corneal diameter were observed during the period of time studied.
Subglacial environments on Earth offer important analogs to Ocean World targets in our solar system. These unique microbial ecosystems remain understudied due to the challenges of access through thick glacial ice (tens to hundreds of meters). Additionally, sub-ice collections must be conducted in a clean manner to ensure sample integrity for downstream microbiological and geochemical analyses. We describe the field-based cleaning of a melt probe that was used to collect brine samples from within a glacier conduit at Blood Falls, Antarctica, for geomicrobiological studies. We used a thermoelectric melting probe called the IceMole that was designed to be minimally invasive in that the logistical requirements in support of drilling operations were small and the probe could be cleaned, even in a remote field setting, so as to minimize potential contamination. In our study, the exterior bioburden on the IceMole was reduced to levels measured in most clean rooms, and below that of the ice surrounding our sampling target. Potential microbial contaminants were identified during the cleaning process; however, very few were detected in the final englacial sample collected with the IceMole and were present in extremely low abundances (∼0.063% of 16S rRNA gene amplicon sequences). This cleaning protocol can help minimize contamination when working in remote field locations, support microbiological sampling of terrestrial subglacial environments using melting probes, and help inform planetary protection challenges for Ocean World analog mission concepts.
Methane is a valuable energy source helping to mitigate the growing energy demand worldwide. However, as a potent greenhouse gas, it has also gained additional attention due to its environmental impacts. The biological production of methane is performed primarily hydrogenotrophically from H2 and CO2 by methanogenic archaea. Hydrogenotrophic methanogenesis also represents a great interest with respect to carbon re-cycling and H2 storage. The most significant carbon source, extremely rich in complex organic matter for microbial degradation and biogenic methane production, is coal. Although interest in enhanced microbial coalbed methane production is continuously increasing globally, limited knowledge exists regarding the exact origins of the coalbed methane and the associated microbial communities, including hydrogenotrophic methanogens. Here, we give an overview of hydrogenotrophic methanogens in coal beds and related environments in terms of their energy production mechanisms, unique metabolic pathways, and associated ecological functions.
Within ESA's Cosmic Vision 2015-2025 plan, a mission to explore the Saturnian System, with special emphasis on its two moons Titan and Enceladus, was selected for study, termed TANDEM (Titan and Enceladus Mission). In this paper, we describe an optimized mission design for a TANDEM-derived solar electric propulsion (SEP) mission. We have chosen the SEP mission scenario for the interplanetary transfer of the TANDEM spacecraft because all feasible gravity assist sequences for a chemical transfer between 2015 and 2025 result in long flight times of about nine years. Our SEP system is based on the German RIT ion engine. For our optimized mission design, we have extensively explored the SEP parameter space (specific impulse, thrust level, power level) and have calculated an optimal interplanetary trajectory for each setting. In contrast to the original TANDEM mission concept, which intends to use two launch vehicles and an all-chemical transfer, our SEP mission design requires only a single Ariane 5 ECA launch for the same payload mass. Without gravity assist, it yields a faster and more flexible transfer with a fight time of less than seven years, and an increased payload ratio. Our mission design proves thereby the capability of SEP even for missions into the outer solar system.
Many important properties of bacterial cellulose (BC), such as moisture absorption capacity, elasticity and tensile strength, largely depend on its structure. This paper presents a study on the effect of the drying method on BC films produced by Medusomyces gisevii using two different procedures: room temperature drying (RT, (24 ± 2 °C, humidity 65 ± 1%, dried until a constant weight was reached) and freeze-drying (FD, treated at − 75 °C for 48 h). BC was synthesized using one of two different carbon sources—either glucose or sucrose. Structural differences in the obtained BC films were evaluated using atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction. Macroscopically, the RT samples appeared semi-transparent and smooth, whereas the FD group exhibited an opaque white color and sponge-like structure. SEM examination showed denser packing of fibrils in FD samples while RT-samples displayed smaller average fiber diameter, lower surface roughness and less porosity. AFM confirmed the SEM observations and showed that the FD material exhibited a more branched structure and a higher surface roughness. The samples cultivated in a glucose-containing nutrient medium, generally displayed a straight and ordered shape of fibrils compared to the sucrose-derived BC, characterized by a rougher and wavier structure. The BC films dried under different conditions showed distinctly different crystallinity degrees, whereas the carbon source in the culture medium was found to have a relatively small effect on the BC crystallinity.
The deformation and damage laws of non-homogeneous irregular structural planes in rocks are the basis for studying the stability of rock engineering. To investigate the damage characteristics of rock containing non-parallel fissures, uniaxial compression tests and numerical simulations were conducted on sandstone specimens containing three non-parallel fissures inclined at 0°, 45° and 90° in this study. The characteristics of crack initiation and crack evolution of fissures with different inclinations were analyzed. A constitutive model for the discontinuous fractures of fissured sandstone was proposed. The results show that the fracture behaviors of fissured sandstone specimens are discontinuous. The stress–strain curves are non-smooth and can be divided into nonlinear crack closure stage, linear elastic stage, plastic stage and brittle failure stage, of which the plastic stage contains discontinuous stress drops. During the uniaxial compression test, the middle or ends of 0° fissures were the first to crack compared to 45° and 90° fissures. The end with small distance between 0° and 45° fissures cracked first, and the end with large distance cracked later. After the final failure, 0° fissures in all specimens were fractured, while 45° and 90° fissures were not necessarily fractured. Numerical simulation results show that the concentration of compressive stress at the tips of 0°, 45° and 90° fissures, as well as the concentration of tensile stress on both sides, decreased with the increase of the inclination angle. A constitutive model for the discontinuous fractures of fissured sandstone specimens was derived by combining the logistic model and damage mechanic theory. This model can well describe the discontinuous drops of stress and agrees well with the whole processes of the stress–strain curves of the fissured sandstone specimens.
The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), is a solar sail design concept, for which the two basic functions of the solar sail, namely light collection and thrust direction, are uncoupled. In this paper, we introduce a novel SPT concept, termed the Advanced Solar Photon Thruster (ASPT). This model does not suffer from the simplified assumptions that have been made for the analysis of compound solar sails in previous studies. We present the equations that describe the force, which acts on the ASPT. After a detailed design analysis, the performance of the ASPT with respect to the conventional flat solar sail (FSS) is investigated for three interplanetary mission scenarios: An Earth-Venus rendezvous, where the solar sail has to spiral towards the Sun, an Earth-Mars rendezvous, where the solar sail has to spiral away from the Sun, and an Earth-NEA rendezvous (to near-Earth asteroid 1996FG3), where a large orbital eccentricity change is required. The investigated solar sails have realistic near-term characteristic accelerations between 0.1 and 0.2mm/s2. Our results show that a SPT is not superior to the flat solar sail unless very idealistic assumptions are made.