Refine
Year of publication
Document Type
- Article (3187)
- Conference Proceeding (1097)
- Part of a Book (177)
- Book (140)
- Doctoral Thesis (30)
- Patent (25)
- Report (9)
- Other (8)
- Lecture (5)
- Poster (4)
- Working Paper (3)
- Master's Thesis (2)
- Preprint (2)
- Bachelor Thesis (1)
- Contribution to a Periodical (1)
- Habilitation (1)
- Talk (1)
Language
- English (4693) (remove)
Keywords
- Biosensor (25)
- Finite-Elemente-Methode (12)
- Einspielen <Werkstoff> (10)
- CAD (8)
- civil engineering (8)
- Bauingenieurwesen (7)
- Blitzschutz (6)
- FEM (6)
- Limit analysis (6)
- Shakedown analysis (6)
- avalanche (6)
- shakedown analysis (6)
- Clusterion (5)
- Enterprise Architecture (5)
- Gamification (5)
- MINLP (5)
- solar sail (5)
- Air purification (4)
- Earthquake (4)
- Engineering optimization (4)
Institute
- Fachbereich Medizintechnik und Technomathematik (1627)
- Fachbereich Elektrotechnik und Informationstechnik (683)
- IfB - Institut für Bioengineering (589)
- Fachbereich Energietechnik (552)
- INB - Institut für Nano- und Biotechnologien (545)
- Fachbereich Chemie und Biotechnologie (528)
- Fachbereich Luft- und Raumfahrttechnik (466)
- Fachbereich Maschinenbau und Mechatronik (276)
- Fachbereich Wirtschaftswissenschaften (202)
- Fachbereich Bauingenieurwesen (150)
- Solar-Institut Jülich (149)
- MASKOR Institut für Mobile Autonome Systeme und Kognitive Robotik (66)
- ECSM European Center for Sustainable Mobility (61)
- Nowum-Energy (26)
- Fachbereich Gestaltung (25)
- Sonstiges (21)
- Fachbereich Architektur (20)
- Institut fuer Angewandte Polymerchemie (20)
- Freshman Institute (18)
- ZHQ - Bereich Hochschuldidaktik und Evaluation (8)
Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes.
Hydrogen peroxide (H₂O₂), a strong oxidizer, is a commonly used sterilization agent employed during aseptic food processing and medical applications. To assess the sterilization efficiency with H₂O₂, bacterial spores are common microbial systems due to their remarkable robustness against a wide variety of decontamination strategies. Despite their widespread use, there is, however, only little information about the detailed time-resolved mechanism underlying the oxidative spore death by H₂O₂. In this work, we investigate chemical and morphological changes of individual Bacillus atrophaeus spores undergoing oxidative damage using optical sensing with trapping Raman microscopy in real-time. The time-resolved experiments reveal that spore death involves two distinct phases: (i) an initial phase dominated by the fast release of dipicolinic acid (DPA), a major spore biomarker, which indicates the rupture of the spore’s core; and (ii) the oxidation of the remaining spore material resulting in the subsequent fragmentation of the spores’ coat. Simultaneous observation of the spore morphology by optical microscopy corroborates these mechanisms. The dependence of the onset of DPA release and the time constant of spore fragmentation on H₂O₂ shows that the formation of reactive oxygen species from H₂O₂ is the rate-limiting factor of oxidative spore death.
Clinical assessment of newly developed sensors is important for ensuring their validity. Comparing recordings of emerging electrocardiography (ECG) systems to a reference ECG system requires accurate synchronization of data from both devices. Current methods can be inefficient and prone to errors. To address this issue, three algorithms are presented to synchronize two ECG time series from different recording systems: Binned R-peak Correlation, R-R Interval Correlation, and Average R-peak Distance. These algorithms reduce ECG data to their cyclic features, mitigating inefficiencies and minimizing discrepancies between different recording systems. We evaluate the performance of these algorithms using high-quality data and then assess their robustness after manipulating the R-peaks. Our results show that R-R Interval Correlation was the most efficient, whereas the Average R-peak Distance and Binned R-peak Correlation were more robust against noisy data.
We present first results from a newly developed monitoring station for a closed loop geothermal heat pump test installation at our campus, consisting of helix coils and plate heat exchangers, as well as an ice-store system. There are more than 40 temperature sensors and several soil moisture content sensors distributed around the system, allowing a detailed monitoring under different operating conditions.In the view of the modern development of renewable energies along with the newly concepts known as Internet of Things and Industry 4.0 (high-tech strategy from the German government), we created a user-friendly web application, which will connect the things (sensors) with the open network (www). Besides other advantages, this allows a continuous remote monitoring of the data from the numerous sensors at an arbitrary sampling rate.Based on the recorded data, we will also present first results from numerical simulations, taking into account all relevant heat transport processes.The aim is to improve the understanding of these processes and their influence on the thermal behavior of shallow geothermal systems in the unsaturated zone. This will in turn facilitate the prediction of the performance of these systems and therefore yield an improvement in their dimensioning when designing a specific shallow geothermal installation.
The first and last mile of a railway journey, in both freight and transit applications, constitutes a high effort and is either non-productive (e.g. in the case of depot operations) or highly inefficient (e.g. in industrial railways). These parts are typically managed on-sight, i.e. with no signalling and train protection systems ensuring the freedom of movement. This is possible due to the rather short braking distances of individual vehicles and shunting consists. The present article analyses the braking behaviour of such shunting units. For this purpose, a dedicated model is developed. It is calibrated on published results of brake tests and validated against a high-definition model for low-speed applications. Based on this model, multiple simulations are executed to obtain a Monte Carlo simulation of the resulting braking distances. Based on the distribution properties and established safety levels, the risk of exceeding certain braking distances is evaluated and maximum braking distances are derived. Together with certain parameters of the system, these can serve in the design and safety assessment of driver assistance systems and automation of these processes.
The problem of fair and privacy-preserving ordered set reconciliation arises in a variety of applications like auctions, e-voting, and appointment reconciliation. While several multi-party protocols have been proposed that solve this problem in the semi-honest model, there are no multi-party protocols that are secure in the malicious model so far. In this paper, we close this gap. Our newly proposed protocols are shown to be secure in the malicious model based on a variety of novel non-interactive zero-knowledge-proofs. We describe the implementation of our protocols and evaluate their performance in comparison to protocols solving the problem in the semi-honest case.
Prioritization is an essential task within requirements engineering to cope with complexity and to establish focus properly. The 3rd Workshop on Requirements Prioritization for customer oriented Software Development (RePriCo’12) focused on requirements prioritization and adjacent themes in the context of customer oriented development of bespoke and standard software. Five submissions have been accepted for the proceedings and for presentation. The report summarizes and points out key findings.
The RoboCup Logistics League (RCLL) is a robotics competition in a production logistics scenario in the context of a Smart Factory. In the competition, a team of three robots needs to assemble products to fulfill various orders that are requested online during the game. This year, the Carologistics team was able to win the competition with a new approach to multi-agent coordination as well as significant changes to the robot’s perception unit and a pragmatic network setup using the cellular network instead of WiFi. In this paper, we describe the major components of our approach with a focus on the changes compared to the last physical competition in 2019.
Due to the increasing complexity of software projects, software development is becoming more and more dependent on teams. The quality of this teamwork can vary depending on the team composition, as teams are always a combination of different skills and personality types. This paper aims to answer the question of how to describe a software development team and what influence the personality of the team members has on the team dynamics. For this purpose, a systematic literature review (n=48) and a literature search with the AI research assistant Elicit (n=20) were conducted. Result: A person’s personality significantly shapes his or her thinking and actions, which in turn influences his or her behavior in software development teams. It has been shown that team performance and satisfaction can be strongly influenced by personality. The quality of communication and the likelihood of conflict can also be attributed to personality.
This paper presents an approach for reducing the cognitive load for humans working in quality control (QC) for production processes that adhere to the 6σ -methodology. While 100% QC requires every part to be inspected, this task can be reduced when a human-in-the-loop QC process gets supported by an anomaly detection system that only presents those parts for manual inspection that have a significant likelihood of being defective. This approach shows good results when applied to image-based QC for metal textile products.