Refine
Year of publication
Institute
Language
- English (24)
Document Type
- Article (15)
- Conference Proceeding (8)
- Book (1)
Mechatronics consist of the integration of mechanical
engineering, electronic integration and computer science/
engineering. These broad fields are essential for robotic
systems, yet it makes it difficult for the researchers to specialize
and be experts in all these fields. Collaboration between
researchers allow for the integration of experience and specialization,
to allow optimized systems. Collaboration between the
European countries and South Africa is critical, as each country
has different resources available, which the other countries
might not have. Applications with the need for approval of
any restrictions, can also be obtained easier in some countries
compared to others, thus preventing the delays of research.
Some problems that have been experienced are discussed, with
the Robotics Center of South Africa as a possible solution.
The Scarab Project
(2015)
Urban Search and Rescue (USAR) is an active research
field in the robotics community. Despite recent advances
for many open research questions, these kind of systems are
not widely used in real rescue missions. One reason is that such
systems are complex and not (yet) very reliable; another is that
one has to be an robotic expert to run such a system. Moreover,
available rescue robots are very expensive and the benefits of
using them are still limited.
In this paper, we present the Scarab robot, an alternative
design for a USAR robot. The robot is light weight, humanpackable
and its primary purpose is that of extending the
rescuer’s capability to sense the disaster site. The idea is that a
responder throws the robot to a certain spot. The robot survives
the impact with the ground and relays sensor data such as
camera images or thermal images to the responder’s hand-held
control unit from which the robot can be remotely controlled.
Ground or aerial robots equipped with advanced sensing technologies, such as three-dimensional laser scanners and advanced mapping algorithms, are deemed useful as a supporting technology for first responders. A great deal of excellent research in the field exists, but practical applications at real disaster sites are scarce. Many projects concentrate on equipping robots with advanced capabilities, such as autonomous exploration or object manipulation. In spite of this, realistic application areas for such robots are limited to teleoperated reconnaissance or search. In this paper, we investigate how well state-of-the-art and off-the-shelf components and algorithms are suited for reconnaissance in current disaster-relief scenarios. The basic idea is to make use of some of the most common sensors and deploy some widely used algorithms in a disaster situation, and to evaluate how well the components work for these scenarios. We acquired the sensor data from two field experiments, one from a disaster-relief operation in a motorway tunnel, and one from a mapping experiment in a partly closed down motorway tunnel. Based on these data, which we make publicly available, we evaluate state-of-the-art and off-the-shelf mapping approaches. In our analysis, we integrate opinions and replies from first responders as well as from some algorithm developers on the usefulness of the data and the limitations of the deployed approaches, respectively. We discuss the lessons we learned during the two missions. These lessons are interesting for the community working in similar areas of urban search and rescue, particularly reconnaissance and search.
This summer, RoboCup competitions were held for the 20th time in Leipzig, Germany. It was the second time that RoboCup took place in Germany, 10 years after the 2006 RoboCup in Bremen. In this article, we give an overview on the latest developments of RoboCup and what happened in the different leagues over the last decade. With its 20th edition, RoboCup clearly is a success story and a role model for robotics competitions. From our personal view point, we acknowledge this by giving a retrospection about what makes RoboCup such a success.
20 Years of RoboCup
(2016)