Refine
Institute
Has Fulltext
- no (7)
Document Type
- Conference Proceeding (7) (remove)
Keywords
- Bloom Taxonomy (1)
- COMSOL Multiphysics (1)
- Future skills (1)
- Key competences (1)
- LiveLink for MATLAB (1)
- Optimization module (1)
- Social impact measurement (1)
- Sustainable engineering education (1)
- education (1)
Zugriffsart
- weltweit (4)
This paper describes two courses on
simulation methods for graduate students:
“Simulation Methods” and “Simulation and
Optimization in Virtual Engineering” The
courses were planned to teach young engineers
how to work with simulation software as well as
to understand the necessary mathematical background.
As simulation software COMSOL is
used. The main philosophy was to combine
theory and praxis in a way that motivates the
students. In addition “soft skills” should be
improved. This was achieved by project work as
final examination. As underlying didactical principle
the ideas of Bloom’s revised taxonomy
were followed. The paper basically focusses on
educational aspects, e.g. how to structure the
course, plan the exercises, organize the project
work and include practical COMSOL examples.
In times of social climate protection movements, such as Fridays for Future, the priorities of society, industry and higher education are currently changing. The consideration of sustainability challenges is increasing. In the context of sustainable development, social skills are crucial to achieving the United Nations Sustainable Development Goals (SDGs). In particular, the impact that educational activities have on people, communities and society is therefore coming to the fore. Research has shown that people with high levels of social competence are better able to manage stressful situations, maintain positive relationships and communicate effectively. They are also associated with better academic performance and career success. However, especially in engineering programs, the social pillar is underrepresented compared to the environmental and economic pillars.
In response to these changes, higher education institutions should be more aware of their social impact - from individual forms of teaching to entire modules and degree programs. To specifically determine the potential for improvement and derive resulting change for further development, we present an initial framework for social impact measurement by transferring already established approaches from the business sector to the education sector. To demonstrate the applicability, we measure the key competencies taught in undergraduate engineering programs in Germany.
The aim is to prepare the students for success in the modern world of work and their future contribution to sustainable development. Additionally, the university can include the results in its sustainability report. Our method can be applied to different teaching methods and enables their comparison.