Refine
Year of publication
Institute
- Fachbereich Medizintechnik und Technomathematik (604)
- INB - Institut für Nano- und Biotechnologien (527)
- Fachbereich Chemie und Biotechnologie (39)
- FH Aachen (5)
- Nowum-Energy (5)
- Fachbereich Energietechnik (4)
- Institut fuer Angewandte Polymerchemie (3)
- Arbeitsstelle fuer Hochschuldidaktik und Studienberatung (1)
- Fachbereich Elektrotechnik und Informationstechnik (1)
Language
- English (553)
- German (70)
- Multiple languages (1)
Document Type
- Article (543)
- Conference Proceeding (63)
- Part of a Book (11)
- Book (2)
- Other (2)
- Report (2)
- Patent (1)
Keywords
- Biosensor (7)
- Graduiertentagung (5)
- LAPS (4)
- field-effect sensor (4)
- hydrogen peroxide (4)
- Field-effect sensor (3)
- Label-free detection (3)
- Light-addressable potentiometric sensor (3)
- biosensors (3)
- capacitive field-effect sensor (3)
Handheld measurement device for field-effect sensor structures: Practical evaluation and limitations
(2007)
The development of new interfaces for (bio-)chemical sensors requires comprehensive analyses and testing. The light-addressable potentiometric sensor (LAPS) can be used as a platform to investigate the sensitivity of a newly developed interface towards (bio-)chemical agents. LAPS measurements are spatially resolved by utilisation of focused light beams to define individual measurement spots. In this work, a new digitally modulated LAPS set-up based on an FPGA design will be introduced to increase the number of measurement spots, to shorten the measurement time and to improve the measurement accuracy.
Realisation of a calorimetric gas sensor on polyimide foil for applications in aseptic food industry
(2012)
A calorimetric gas sensor is presented for the monitoring of vapour-phase H2O2 at elevated temperature during sterilisation processes in aseptic food industry. The sensor was built up on a flexible polyimide foil (thickness: 25 μm) that has been chosen due to its thermal stability and low thermal conductivity. The sensor set-up consists of two temperature-sensitive platinum thin-film resistances passivated by a layer of SU-8 photo resist and catalytically activated by manganese(IV) oxide. Instead of an active heating structure, the calorimetric sensor utilises the elevated temperature of the evaporated H2O2 aerosol. In an experimental test rig, the sensor has shown a sensitivity of 4.78 °C/(%, v/v) in a H2O2 concentration range of 0%, v/v to 8%, v/v. Furthermore, the sensor possesses the same, unchanged sensor signal even at varied medium temperatures between 210 °C and 270 °C of the gas stream. At flow rates of the gas stream from 8 m3/h to 12 m3/h, the sensor has shown only a slightly reduced sensitivity at a low flow rate of 8 m3/h. The sensor characterisation demonstrates the suitability of the calorimetric gas sensor for monitoring the efficiency of industrial sterilisation processes.
A wireless sensor system based on the industrial ZigBee standard for low-rate wireless networking was developed that enables real-time monitoring of gaseous H2O2 during the package sterilization in aseptic food processes. The sensor system consists of a remote unit connected to a calorimetric gas sensor, which was already established in former works, and an external base unit connected to a laptop computer. The remote unit was built up by an XBee radio frequency (RF) module for data communication and a programmable system-on-chip controller to read out the sensor signal and process the sensor data, whereas the base unit is a second XBee RF module. For the rapid H2O2 detection on various locations inside the package that has to be sterilized, a novel read-out strategy of the calorimetric gas sensor was established, wherein the sensor response is measured within the short sterilization time and correlated with the present H2O2 concentration. In an exemplary measurement application in an aseptic filling machinery, the suitability of the new, wireless sensor system was demonstrated, wherein the influence of the gas velocity on the H2O2 distribution inside a package was determined and verified with microbiological tests.