Refine
Document Type
- Conference Proceeding (16)
- Article (10)
- Part of a Book (6)
Keywords
- MINLP (3)
- Engineering optimization (2)
- Experimental validation (2)
- Optimal Topology (2)
- Optimization (2)
- Powertrain (2)
- Process engineering (2)
- Pump System (2)
- Technical Operations Research (2)
- Water distribution system (2)
- mathematical optimization (2)
- BEV (1)
- Booster Station (1)
- Case Study (1)
- Case study (1)
- Chance Constraint (1)
- Controller Parameter (1)
- Cooling system (1)
- Discrete Optimization (1)
- Drinking Water Supply (1)
This chapter describes three general strategies to master uncertainty in technical systems: robustness, flexibility and resilience. It builds on the previous chapters about methods to analyse and identify uncertainty and may rely on the availability of technologies for particular systems, such as active components. Robustness aims for the design of technical systems that are insensitive to anticipated uncertainties. Flexibility increases the ability of a system to work under different situations. Resilience extends this characteristic by requiring a given minimal functional performance, even after disturbances or failure of system components, and it may incorporate recovery. The three strategies are described and discussed in turn. Moreover, they are demonstrated on specific technical systems.
Booster stations can fulfill a varying pressure demand with high energy-efficiency, because individual pumps can be deactivated at smaller loads. Although this is a seemingly simple approach, it is not easy to decide precisely when to activate or deactivate pumps. Contemporary activation controls derive the switching points from the current volume flow through the system. However, it is not measured directly for various reasons. Instead, the controller estimates the flow based on other system properties. This causes further uncertainty for the switching decision. In this paper, we present a method to find a robust, yet energy-efficient activation strategy.
The conference center darmstadtium in Darmstadt is a prominent example of energy efficient buildings. Its heating system consists of different source and consumer circuits connected by a Zortström reservoir. Our goal was to reduce the energy costs of the system as much as possible. Therefore, we analyzed its supply circuits. The first step towards optimization is a complete examination of the system: 1) Compilation of an object list for the system, 2) collection of the characteristic curves of the components, and 3) measurement of the load profiles of the heat and volume-flow demand. Instead of modifying the system manually and testing the solution by simulation, the second step was the creation of a global optimization program. The objective was to minimize the total energy costs for one year. We compare two different topologies and show opportunities for significant savings.
The UN sets the goal to ensure access to water and sanitation for all people by 2030. To address this goal, we present a multidisciplinary approach for designing water supply networks for slums in large cities by applying mathematical optimization. The problem is modeled as a mixed-integer linear problem (MILP) aiming to find a network describing the optimal supply infrastructure. To illustrate the approach, we apply it on a small slum cluster in Dhaka, Bangladesh.
Finding a good system topology with more than a handful of components is a
highly non-trivial task. The system needs to be able to fulfil all expected load cases, but at the
same time the components should interact in an energy-efficient way. An example for a system
design problem is the layout of the drinking water supply of a residential building. It may be
reasonable to choose a design of spatially distributed pumps which are connected by pipes in at
least two dimensions. This leads to a large variety of possible system topologies. To solve such
problems in a reasonable time frame, the nonlinear technical characteristics must be modelled
as simple as possible, while still achieving a sufficiently good representation of reality. The
aim of this paper is to compare the speed and reliability of a selection of leading mathematical
programming solvers on a set of varying model formulations. This gives us empirical evidence
on what combinations of model formulations and solver packages are the means of choice with the current state of the art.
Successful optimization requires an appropriate model of the system under consideration. When selecting a suitable level of detail, one has to consider solution quality as well as the computational and implementation effort. In this paper, we present a MINLP for a pumping system for the drinking water supply of high-rise buildings. We investigate the influence of the granularity of the underlying physical models on the solution quality. Therefore, we model the system with a varying level of detail regarding the friction losses, and conduct an experimental validation of our model on a modular test rig. Furthermore, we investigate the computational effort and show that it can be reduced by the integration of domain-specific knowledge.
In order to maximize the possible travel distance of battery electric vehicles with one battery charge, it is mandatory to adjust all components of the powertrain carefully to each other. While current vehicle designs mostly simplify the powertrain rigorously and use an electric motor in combination with a gearbox with only one fixed transmission ratio, the use of multi-gear systems has great potential. First, a multi-speed system is able to improve the overall energy efficiency. Secondly, it is able to reduce the maximum momentum and therefore to reduce the maximum current provided by the traction battery, which results in a longer battery lifetime. In this paper, we present a systematic way to generate multi-gear gearbox designs that—combined with a certain electric motor—lead to the most efficient fulfillment of predefined load scenarios and are at the same time robust to uncertainties in the load. Therefore, we model the electric motor and the gearbox within a Mixed-Integer Nonlinear Program, and optimize the efficiency of the mechanical parts of the powertrain. By combining this mathematical optimization program with an unsupervised machine learning algorithm, we are able to derive global-optimal gearbox designs for practically relevant momentum and speed requirements.
The development of resilient technical systems is a challenging task, as the system should adapt automatically to unknown disturbances and component failures. To evaluate different approaches for deriving resilient technical system designs, we developed a modular test rig that is based on a pumping system. On the basis of this example
system, we present metrics to quantify resilience and an algorithmic approach to improve resilience. This approach enables the pumping system to automatically react on unknown disturbances and to reduce the impact of component failures. In this case, the system is able to automatically adapt its topology by activating additional valves. This enables the system to still reach a minimum performance, even in case of failures. Furthermore, timedependent disturbances are evaluated continuously, deviations from the original state are automatically detected and anticipated in the future. This allows to reduce the impact of future disturbances and leads to a more resilient
system behaviour.
Water suppliers are faced with the great challenge of achieving high-quality and, at the same time, low-cost water supply. In practice, the focus is set on the most beneficial maintenance measures and/or capacity adaptations of existing water distribution systems (WDS). Since climatic and demographic influences will pose further challenges in the future, the resilience enhancement of WDS, i.e. the enhancement of their capability to withstand and recover from disturbances, has been in particular focus recently. To assess the resilience of WDS, metrics based on graph theory have been proposed. In this study, a promising approach is applied to assess the resilience of the WDS for a district in a major German City. The conducted analysis provides insight into the process of actively influencing the
resilience of WDS