Refine
Document Type
- Conference Proceeding (13)
- Article (10)
- Part of a Book (9)
Keywords
- MINLP (3)
- Experimental validation (2)
- Optimal Topology (2)
- Optimization (2)
- Powertrain (2)
- Pump System (2)
- Technical Operations Research (2)
- Water distribution system (2)
- mathematical optimization (2)
- BEV (1)
- Booster Station (1)
- Case Study (1)
- Case study (1)
- Chance Constraint (1)
- Controller Parameter (1)
- Discrete Optimization (1)
- Drinking Water Supply (1)
- Engineering Application (1)
- Engineering optimization (1)
- Gearbox (1)
This chapter describes three general strategies to master uncertainty in technical systems: robustness, flexibility and resilience. It builds on the previous chapters about methods to analyse and identify uncertainty and may rely on the availability of technologies for particular systems, such as active components. Robustness aims for the design of technical systems that are insensitive to anticipated uncertainties. Flexibility increases the ability of a system to work under different situations. Resilience extends this characteristic by requiring a given minimal functional performance, even after disturbances or failure of system components, and it may incorporate recovery. The three strategies are described and discussed in turn. Moreover, they are demonstrated on specific technical systems.
Water distribution systems are an essential supply infrastructure for cities. Given that climatic and demographic influences will pose further challenges for these infrastructures in the future, the resilience of water supply systems, i.e. their ability to withstand and recover from disruptions, has recently become a subject of research. To assess the resilience of a WDS, different graph-theoretical approaches exist. Next to general metrics characterizing the network topology, also hydraulic and technical restrictions have to be taken into account. In this work, the resilience of an exemplary water distribution network of a major German city is assessed, and a Mixed-Integer Program is presented which allows to assess the impact of capacity adaptations on its resilience.
The application of mathematical optimization methods for water supply system design and operation provides the capacity to increase the energy efficiency and to lower the investment costs considerably. We present a system approach for the optimal design and operation of pumping systems in real-world high-rise buildings that is based on the usage of mixed-integer nonlinear and mixed-integer linear modeling approaches. In addition, we consider different booster station topologies, i.e. parallel and series-parallel central booster stations as well as decentral booster stations. To confirm the validity of the underlying optimization models with real-world system behavior, we additionally present validation results based on experiments conducted on a modularly constructed pumping test rig. Within the models we consider layout and control decisions for different load scenarios, leading to a Deterministic Equivalent of a two-stage stochastic optimization program. We use a piecewise linearization as well as a piecewise relaxation of the pumps’ characteristics to derive mixed-integer linear models. Besides the solution with off-the-shelf solvers, we present a problem specific exact solving algorithm to improve the computation time. Focusing on the efficient exploration of the solution space, we divide the problem into smaller subproblems, which partly can be cut off in the solution process. Furthermore, we discuss the performance and applicability of the solution approaches for real buildings and analyze the technical aspects of the solutions from an engineer’s point of view, keeping in mind the economically important trade-off between investment and operation costs.
Component failures within water supply systems can lead to significant performance losses. One way to address these losses is the explicit anticipation of failures within the design process. We consider a water supply system for high-rise buildings, where pump failures are the most likely failure scenarios. We explicitly consider these failures within an early design stage which leads to a more resilient system, i.e., a system which is able to operate under a predefined number of arbitrary pump failures. We use a mathematical optimization approach to compute such a resilient design. This is based on a multi-stage model for topology optimization, which can be described by a system of nonlinear inequalities and integrality constraints. Such a model has to be both computationally tractable and to represent the real-world system accurately. We therefore validate the algorithmic solutions using experiments on a scaled test rig for high-rise buildings. The test rig allows for an arbitrary connection of pumps to reproduce scaled versions of booster station designs for high-rise buildings. We experimentally verify the applicability of the presented optimization model and that the proposed resilience properties are also fulfilled in real systems.
Successful optimization requires an appropriate model of the system under consideration. When selecting a suitable level of detail, one has to consider solution quality as well as the computational and implementation effort. In this paper, we present a MINLP for a pumping system for the drinking water supply of high-rise buildings. We investigate the influence of the granularity of the underlying physical models on the solution quality. Therefore, we model the system with a varying level of detail regarding the friction losses, and conduct an experimental validation of our model on a modular test rig. Furthermore, we investigate the computational effort and show that it can be reduced by the integration of domain-specific knowledge.
Energy-efficient components do not automatically lead to energy-efficient systems. Technical Operations Research (TOR) shifts the focus from the single component to the system as a whole and finds its optimal topology and operating strategy simultaneously. In previous works, we provided a preselected construction kit of suitable components for the algorithm. This approach may give rise to a combinatorial explosion if the preselection cannot be cut down to a reasonable number by human intuition. To reduce the number of discrete decisions, we integrate laws derived from similarity theory into the optimization model. Since the physical characteristics of a production series are similar, it can be described by affinity and scaling laws. Making use of these laws, our construction kit can be modeled more efficiently: Instead of a preselection of components, it now encompasses whole model ranges. This allows us to significantly increase the number of possible set-ups in our model. In this paper, we present how to embed this new formulation into a mixed-integer program and assess the run time via benchmarks. We present our approach on the example of a ventilation system design problem.
The understanding that optimized components do not automatically lead to energy-efficient systems sets the attention from the single component on the entire technical system. At TU Darmstadt, a new field of research named Technical Operations Research (TOR) has its origin. It combines mathematical and technical know-how for the optimal design of technical systems. We illustrate our optimization approach in a case study for the design of a ventilation system with the ambition to minimize the energy consumption for a temporal distribution of diverse load demands. By combining scaling laws with our optimization methods we find the optimal combination of fans and show the advantage of the use of multiple fans.
In order to maximize the possible travel distance of battery electric vehicles with one battery charge, it is mandatory to adjust all components of the powertrain carefully to each other. While current vehicle designs mostly simplify the powertrain rigorously and use an electric motor in combination with a gearbox with only one fixed transmission ratio, the use of multi-gear systems has great potential. First, a multi-speed system is able to improve the overall energy efficiency. Secondly, it is able to reduce the maximum momentum and therefore to reduce the maximum current provided by the traction battery, which results in a longer battery lifetime. In this paper, we present a systematic way to generate multi-gear gearbox designs that—combined with a certain electric motor—lead to the most efficient fulfillment of predefined load scenarios and are at the same time robust to uncertainties in the load. Therefore, we model the electric motor and the gearbox within a Mixed-Integer Nonlinear Program, and optimize the efficiency of the mechanical parts of the powertrain. By combining this mathematical optimization program with an unsupervised machine learning algorithm, we are able to derive global-optimal gearbox designs for practically relevant momentum and speed requirements.
Around 60% of the paper worldwide is made from recovered paper. Especially adhesive contaminants, so called stickies, reduce paper quality. To remove stickies but at the same time keep as many valuable fibers as possible, multi-stage screening systems with several interconnected pressure screens are used. When planning such systems, suitable screens have to be selected and their interconnection as well as operational parameters have to be defined considering multiple conflicting objectives. In this contribution, we present a Mixed-Integer Nonlinear Program to optimize system layout, component selection and operation to find a suitable trade-off between output quality and yield.