Refine
Institute
Has Fulltext
- no (18)
Language
- English (18)
Document Type
- Conference Proceeding (7)
- Part of a Book (6)
- Article (5)
Keywords
- MINLP (4)
- Engineering optimization (3)
- Powertrain (3)
- Energy efficiency (2)
- Experimental validation (2)
- Optimization (2)
- Technical Operations Research (2)
- Water (2)
- BEV (1)
- Booster Stations (1)
Is part of the Bibliography
- no (18)
The transition within transportation towards battery electric vehicles can lead to a more sustainable future. To account for the development goal ‘climate action’ stated by the United Nations, it is mandatory, within the conceptual design phase, to derive energy-efficient system designs. One barrier is the uncertainty of the driving behaviour within the usage phase. This uncertainty is often addressed by using a stochastic synthesis process to derive representative driving cycles and by using cycle-based optimization. To deal with this uncertainty, a new approach based on a stochastic optimization program is presented. This leads to an optimization model that is solved with an exact solver. It is compared to a system design approach based on driving cycles and a genetic algorithm solver. Both approaches are applied to find efficient electric powertrains with fixed-speed and multi-speed transmissions. Hence, the similarities, differences and respective advantages of each optimization procedure are discussed.
The development of resilient technical systems is a challenging task, as the system should adapt automatically to unknown disturbances and component failures. To evaluate different approaches for deriving resilient technical system designs, we developed a modular test rig that is based on a pumping system. On the basis of this example
system, we present metrics to quantify resilience and an algorithmic approach to improve resilience. This approach enables the pumping system to automatically react on unknown disturbances and to reduce the impact of component failures. In this case, the system is able to automatically adapt its topology by activating additional valves. This enables the system to still reach a minimum performance, even in case of failures. Furthermore, timedependent disturbances are evaluated continuously, deviations from the original state are automatically detected and anticipated in the future. This allows to reduce the impact of future disturbances and leads to a more resilient
system behaviour.
To increase pressure to supply all floors of high buildings with water, booster stations, normally consisting of several parallel pumps in the basement, are used. In this work, we demonstrate the potential of a decentralized pump topology regarding energy savings in water supply systems of skyscrapers. We present an approach, based on Mixed-Integer Nonlinear Programming, that allows to choose an optimal network topology and optimal pumps from a predefined construction kit comprising different pump types. Using domain-specific scaling laws and Latin Hypercube Sampling, we generate different input sets of pump types and compare their impact on the efficiency and cost of the total system design. As a realistic application example, we consider a hotel building with 325 rooms, 12 floors and up to four pressure zones.
Resilience as a concept has found its way into different disciplines to describe the ability of an individual or system to withstand and adapt to changes in its environment. In this paper, we provide an overview of the concept in different communities and extend it to the area of mechanical engineering. Furthermore, we present metrics to measure resilience in technical systems and illustrate them by applying them to load-carrying structures. By giving application examples from the Collaborative Research Centre (CRC) 805, we show how the concept of resilience can be used to control uncertainty during different stages of product life.
The overall energy efficiency of ventilation systems can be improved by considering not only single components, but by considering as well the interplay between every part of the system. With the help of the method "TOR" ("Technical Operations Research"), which was developed at the Chair of Fluid Systems at TU Darmstadt, it is possible to improve the energy efficiency of the whole system by considering all possible design choices programmatically. We show the ability of this systematic design approach with a ventilation system for buildings as a use case example.
Based on a Mixed-Integer Nonlinear Program (MINLP) we model the ventilation system. We use binary variables to model the selection of different pipe diameters. Multiple fans are model with the help of scaling laws. The whole system is represented by a graph, where the edges represent the pipes and fans and the nodes represents the source of air for cooling and the sinks, that have to be cooled. At the beginning, the human designer chooses a construction kit of different suitable fans and pipes of different diameters and different load cases. These boundary conditions define a variety of different possible system topologies. It is not possible to consider all topologies by hand. With the help of state of the art solvers, on the other side, it is possible to solve this MINLP.
Next to this, we also consider the effects of malfunctions in different components. Therefore, we show a first approach to measure the resilience of the shown example use case. Further, we compare the conventional approach with designs that are more resilient. These more resilient designs are derived by extending the before mentioned model with further constraints, that consider explicitly the resilience of the overall system. We show that it is possible to design resilient systems with this method already in the early design stage and compare the energy efficiency and resilience of these different system designs.
The energy-efficiency of technical systems can be improved by a systematic design approach. Technical Operations Research (TOR) employs methods known from Operations Research to find a global optimal layout and operation strategy of technical systems. We show the practical usage of this approach by the systematic design of a decentralized water supply system for skyscrapers. All possible network options and operation strategies are modeled by a Mixed-Integer Nonlinear Program. We present the optimal system found by our approach and highlight the energy savings compared to a conventional system design.
Finding a good system topology with more than a handful of components is a
highly non-trivial task. The system needs to be able to fulfil all expected load cases, but at the
same time the components should interact in an energy-efficient way. An example for a system
design problem is the layout of the drinking water supply of a residential building. It may be
reasonable to choose a design of spatially distributed pumps which are connected by pipes in at
least two dimensions. This leads to a large variety of possible system topologies. To solve such
problems in a reasonable time frame, the nonlinear technical characteristics must be modelled
as simple as possible, while still achieving a sufficiently good representation of reality. The
aim of this paper is to compare the speed and reliability of a selection of leading mathematical
programming solvers on a set of varying model formulations. This gives us empirical evidence
on what combinations of model formulations and solver packages are the means of choice with the current state of the art.
On obligations in the development process of resilient systems with algorithmic design methods
(2018)
Advanced computational methods are needed both for the design of large systems and to compute high accuracy solutions. Such methods are efficient in computation, but the validation of results is very complex, and highly skilled auditors are needed to verify them. We investigate legal questions concerning obligations in the development phase, especially for technical systems developed using advanced methods. In particular, we consider methods of resilient and robust optimization. With these techniques, high performance solutions can be found, despite a high variety of input parameters. However, given the novelty of these methods, it is uncertain whether legal obligations are being met. The aim of this paper is to discuss if and how the choice of a specific computational method affects the developer’s product liability. The review of legal obligations in this paper is based on German law and focuses on the requirements that must be met during the design and development process.