Refine
Year of publication
Institute
Has Fulltext
- no (66)
Document Type
- Article (23)
- Book (20)
- Conference Proceeding (15)
- Patent (3)
- Report (3)
- Part of a Book (1)
- Conference Poster (1)
Keywords
The recovery of waste heat requires heat exchangers to extract it from a liquid or gaseous medium into another working medium, a refrigerant. In Organic Rankine Cycles (ORC) on Combustion Engines there are two major heat sources, the exhaust gas and the water/glycol fluid from the engine’s cooling circuit. A heat exchanger design must be adapted to the different requirements and conditions resulting from the heat sources, fluids, system configurations, geometric restrictions, and etcetera. The Stacked Shell Cooler (SSC) is a new and very specific design of a plate heat exchanger, created by AKG, which allows with a maximum degree of freedom the optimization of heat exchange rate and the reduction of the related pressure drop. This optimization in heat exchanger design for ORC systems is even more important, because it reduces the energy consumption of the system and therefore maximizes the increase in overall efficiency of the engine.
In this paper the way to a 5-day-car with respect to a modular valve train systems for spark ignited combustion engines is shown. The necessary product diversity is shift from mechanical or physical components to software components. Therefore, significant improvements of logistic indicators are expected and shown. The working principle of a camless cylinder head with respect to an electromagnetical valve train (EMVT) is explained and it is demonstrated that shifting physical diversity to software is feasible. The future design of combustion engine systems including customisation can be supported by a set of assistance tools which is shown exemplary.
Environmental emissions, global warming, and energy-related concerns have accelerated the advancements in conventional vehicles that primarily use internal combustion engines. Among the existing technologies, hydrogen fuel cell electric vehicles and fuel cell hybrid electric vehicles may have minimal contributions to greenhouse gas emissions and thus are the prime choices for environmental concerns. However, energy management in fuel cell electric vehicles and fuel cell hybrid electric vehicles is a major challenge. Appropriate control strategies should be used for effective energy management in these vehicles. On the other hand, there has been significant progress in artificial intelligence, machine learning, and designing data-driven intelligent controllers. These techniques have found much attention within the community, and state-of-the-art energy management technologies have been developed based on them. This manuscript reviews the application of machine learning and intelligent controllers for prediction, control, energy management, and vehicle to everything (V2X) in hydrogen fuel cell vehicles. The effectiveness of data-driven control and optimization systems are investigated to evolve, classify, and compare, and future trends and directions for sustainability are discussed.