Fachbereich Chemie und Biotechnologie
Refine
Year of publication
Institute
- Fachbereich Chemie und Biotechnologie (925)
- INB - Institut für Nano- und Biotechnologien (83)
- Fachbereich Medizintechnik und Technomathematik (41)
- Institut fuer Angewandte Polymerchemie (37)
- IfB - Institut für Bioengineering (11)
- Nowum-Energy (10)
- Fachbereich Energietechnik (8)
- Fachbereich Maschinenbau und Mechatronik (3)
- Fachbereich Bauingenieurwesen (2)
- Fachbereich Elektrotechnik und Informationstechnik (2)
Language
- English (560)
- German (362)
- Multiple languages (2)
- Spanish (1)
Document Type
- Article (610)
- Patent (119)
- Book (66)
- Conference: Meeting Abstract (56)
- Conference Proceeding (35)
- Part of a Book (21)
- Report (6)
- Doctoral Thesis (4)
- Bachelor Thesis (3)
- Conference Poster (1)
Keywords
- Heparin (3)
- Bacillaceae (2)
- Biorefinery (2)
- Biotechnological application (2)
- Butanol (2)
- Chemometrics (2)
- Dietary supplements (2)
- Glucosamine (2)
- IR (2)
- IR spectroscopy (2)
Bioelectrochemical systems (BESs) offer a sustainable method for chemical production, including the enhanced production of succinic acid. By combining fermentation with BES, it could be possible to achieve sustainable succinic acid production and CO2 fixation using Actinobacillus succinogenes. In literature, the potential application of BES is commonly associated with increased succinate yields, as it is expected to enhance the availability of NADH, thereby influencing the intracellular nicotinamide adenine dinucleotide (NADH/NAD+) balance. However, it remains unclear whether BES can improve NADH regeneration and achieve higher NADH/NAD+ ratios across all growth phases of A. succinogenes. This study investigates the impact of an applied electrical potential on the intracellular NADH/NAD+ ratio during an electrochemical-assisted fermentation process. Using an adapted high-performance liquid chromatography method with a Supelcosil LC-18-T column, it was demonstrated that NADH availability in BES, particularly during the stationary growth phase, improved by up to 1.98-fold compared to the control. This enhancement in reducing power led to a succinate yield of 0.747 ± 0.01 g g−1, representing a 15.65% increase compared to a fermentation without electrochemical assistance. These findings support the expectation that the use of BES could enhance the competitiveness of bio-based succinate production.
Industrial digestates from short-fibre residues, generated in paper recycling mills, are driving interest in resource recovery. This study aims to explore their potential for water recovery. Understanding particle dynamics aids in optimizing dewatering for digestate management. The particle size distribution in this study revealed significant fractions: <0.63 μm (6–20%), 0.63–20 μm (38–52%), and >20 μm (11–16%). Pre-treatment with Na4P2O7 and H2O2 enhances settling and lowers total dissolved solids (TDSs) but results in variation of size distribution. Additionally, this study investigates further water reuse in paper mills, focusing on the quality of ultrafiltration (UF) permeate obtained from the digestate of short fibres. UF permeate analysis reveals deviations from freshwater standards in paper mills. Despite effective TS removal, UF permeate falls short of paper mill water standards due to high TDSs, electrical conductivity, and nutrient concentrations, necessitating further downstream treatment with nanofiltration or reverse osmosis. A substantial reduction of permeate flux from 31 to 5 L/(m2·h) over the time indicated fouling and inefficient membrane wash. The silt density index of the UF membrane at 30 min registered 2.1, suggesting potential fouling. Further investigations on optimizing UF operations to enhance permeate flux and exploring alternative UF membranes are required.
There is a lack of fast and inexpensive analytical methods for quantification of key ingredients in dietary supplements. Here we explore the potential of near infrared (NIR) spectrometry, attenuated total reflection infrared (ATR-IR) spectrometry and potentiometric multisensor system (MSS) in quantitative determination of glucosamine and hyaluronic acid in commercial samples of dietary supplements. All three methods have demonstrated their applicability for this task when combined with chemometric data processing. Principal Component Analysis (PCA) revealed similarities across the three techniques, indicating the presence of distinct sample compositions. Partial least squares (PLS) models were constructed for glucosamine and hyaluronic acid quantification. The root mean square error of cross validation (RMSECV) for glucosamine quantification varied between 7.7 wt% and 8.9 wt%. NIR spectrometry has demonstrated the best accuracy for hyaluronic acid (RMSECV = 9.9 wt%), while ATR-IR and MSS yielded somewhat worse performance with RMSECV values of 12.1 and 11.3 wt%, respectively. The findings of this study indicated that NIR, ATR-IR and MSS exhibit reduced accuracy in comparison to complex and high-precision analytical techniques. However, they can be employed for the rapid, semi-quantitative evaluation of glucosamine and hyaluronic acid in dietary supplements, with the possibility of integration into routine quality control procedures.
Many industrial processes are performed using harmful chemicals. The current technical synthesis of N-acyl-amino acids relies on acyl chlorides, which are typically obtained from phosgene chemistry. A greener alternative is the application of whole cells or enzymes to carry out synthesis in an environmentally friendly manner. Aminoacylases belong to the hydrolase family and the resolution of racemic mixtures of N-acetyl-amino acids is a well-known industrial process. Several new enzymes accepting long-chain fatty acids as substrates were discovered in recent years. This article reviews the synthetic potential of aminoacylases to produce biobased N-acyl-amino acid surfactants. The focus lays on a survey of the different types of aminoacylases available for synthesis and their reaction products. The enzymes are categorized according to their protein family classification and their biochemical characteristics including substrate spectra, reaction optima and process stability, both in hydrolysis and under process conditions suitable for synthesis. Finally, the benefits and future challenges of enzymatic N-acyl-amino acid synthesis with aminoacylases will be discussed.
To respond to the increasing demand for hyaluronic acid (HA) in dietary supplements (DSs) and nutricosmetics marketed for the treatment of osteoarthritis or moistening, it is essential to have an accurate and reliable method for its analysis in the final products. The study aimed to develop and validate alternative method for the quality control of HA in DSs using low-field (LF) and high-field (HF) nuclear magnetic resonance (NMR) spectroscopy at 80 MHz and 600 MHz, respectively. Moreover, chondroitin sulphate (CH), another active ingredient in DSs, can be simultaneously quantified. The 1H-NMR methods have been successfully validated in terms of limit of detection (LOD) and limit of quantitation (LOQ), which were found to be 0.1 mg/mL and 0.2 mg/mL (80 MHz) as well as 0.2 mg/mL and 0.6 mg/mL (600 MHz). Recovery rates were estimated to be between 92 and 120% on both spectrometers; precision including sample preparation was found to be 4.2% and 8.0% for 600 MHz and 80 MHz, respectively. Quantitative results obtained by HF and LF NMR were comparable for 16 DSs with varying matrix. HF NMR experiments at 70 ℃ serve as a simple and efficient quality control tool for HA and CH in multicomponent DSs. Benchtop NMR measurements, upon preceding acid hydrolysis, offer a cost-effective and cryogen-free alternative for analyzing DSs in the absence of CH and paramagnetic matrix components.
Enhancement of succinic acid production by Actinobacillus succinogenes in an electro-bioreactor
(2024)
This work examines the electrochemically enhanced production of succinic acid using the bacterium Actinobacillus succinogenes. The principal objective is to enhance the metabolic potential of glucose and CO2 utilization via the C4 pathway in order to synthesize succinic acid. We report on the development of an electro-bioreactor system to increase succinic acid production in a power-2-X approach. The use of activated carbon fibers as electrode surfaces and contact areas allows A. succinogenes to self-initiate biofilm formation. The integration of an electrical potential into the system shifts the redox balance from NAD+ to NADH, increasing the efficiency of metabolic processes. Mediators such as neutral red facilitate electron transfer within the system and optimize the redox reactions that are crucial for increased succinic acid production. Furthermore, the role of carbon nanotubes (CNTs) in electron transfer was investigated. The electro-bioreactor system developed here was operated in batch mode for 48 h and showed improvements in succinic acid yield and concentration. In particular, a run with 100 µM neutral red and a voltage of −600 mV achieved a yield of 0.7 gsuccinate·gglucose−1. In the absence of neutral red, a higher yield of 0.72 gsuccinate·gglucose−1 was achieved, which represents an increase of 14% compared to the control. When a potential of −600 mV was used in conjunction with 500 µg∙L−1 CNTs, a 21% increase in succinate concentration was observed after 48 h. An increase of 33% was achieved in the same batch by increasing the stirring speed. These results underscore the potential of the electro-bioreactor system to markedly enhance succinic acid production.
Several unconnected laboratory experiments are usually offered for students in instrumental analysis lab. To give the students a more rational overview of the most common instrumental techniques, a new laboratory experiment was developed. Marketed pain relief drugs, familiar consumer products with one to three active components, namely, acetaminophen (paracetamol), acetylsalicylic acid (ASA), and caffeine, were selected. Common analytical methods were compared regarding the performance of qualitative and quantitative analysis of unknown tablets: UV–visible (UV–vis), infrared (IR), and nuclear magnetic resonance (NMR) spectroscopies, as well as high-performance liquid chromatography (HPLC). The students successfully uncovered the composition of formulations, which were divided into three difficulty categories. Students were shown that in addition to simple mixtures handled in theoretical classes, the composition of complex drug products can also be uncovered. By comparing the performance of different techniques, students deepen their understanding and compare the efficiency of analytical methods in the context of complex mixtures. The laboratory experiment can be adjusted for graduate level by including extra tasks such as method optimization, validation, and 2D spectroscopic techniques.
Perennial ryegrass (Lolium perenne) is an underutilized lignocellulosic biomass that has several benefits such as high availability, renewability, and biomass yield. The grass press-juice obtained from the mechanical pretreatment can be used for the bio-based production of chemicals. Lactic acid is a platform chemical that has attracted consideration due to its broad area of applications. For this reason, the more sustainable production of lactic acid is expected to increase. In this work, lactic acid was produced using complex medium at the bench- and reactor scale, and the results were compared to those obtained using an optimized press-juice medium. Bench-scale fermentations were carried out in a pH-control system and lactic acid production reached approximately 21.84 ± 0.95 g/L in complex medium, and 26.61 ± 1.2 g/L in press-juice medium. In the bioreactor, the production yield was 0.91 ± 0.07 g/g, corresponding to a 1.4-fold increase with respect to the complex medium with fructose. As a comparison to the traditional ensiling process, the ensiling of whole grass fractions of different varieties harvested in summer and autumn was performed. Ensiling showed variations in lactic acid yields, with a yield up to 15.2% dry mass for the late-harvested samples, surpassing typical silage yields of 6–10% dry mass.
Metathese von Ölsäure und Derivaten ist ein interessanter Weg für die Synthese bifunktioneller Verbindungen aus nachwachsenden Rohstoffen. Verwendet wurden Ru-Katalysatoren der zweiten Generation, welche eine hohe Toleranz gegenüber funktionellen Gruppen und Verunreinigungen aufweisen. Trotz des Einsatzes technischer Edukte waren Umsetzungen mit niedrigen Katalysatormengen (0.001 – 0.01 mol-%) möglich, mit Ausbeuten entsprechend der Literatur. Kreuzmetathesen ermöglichten variable Kettenlängen und Funktionalitäten der Monomere, die Produktgewinnung ist jedoch aufwändig. Selbstmetathese lieferte C18-bifunktionelle Verbindungen, welche einfach durch Destillation oder Kristallisation isoliert werden können. Neben der katalystischen Umsetzung wurde auch die Produktgewinnung untersucht und für ausgewählte Produkte auch im größeren Maßstab durchgeführt.
Self metathesis of oleochemicals offers a variety of bifunctional compounds, that can be used as monomer for polymer production. Many precursors are in huge scales available, like oleic acid ester (biodiesel), oleyl alcohol (tensides), oleyl amines (tensides, lubricants). We show several ways to produce and separate and purify C18-α,ω-bifunctional compounds, using Grubbs 2nd Generation catalysts, starting from technical grade educts.