Nowum-Energy
Refine
Year of publication
Institute
Has Fulltext
- no (22)
Document Type
- Conference Proceeding (22) (remove)
Keywords
- Agent-based simulation (1)
- Energy market design (1)
- Future skills (1)
- Key competences (1)
- Market modeling (1)
- Social impact measurement (1)
- Sustainable engineering education (1)
- storage dispatch (1)
- storage optimisation (1)
- thermal storage (1)
Market abstraction of energy markets and policies - application in an agent-based modeling toolbox
(2023)
In light of emerging challenges in energy systems, markets are prone to changing dynamics and market design. Simulation models are commonly used to understand the changing dynamics of future electricity markets. However, existing market models were often created with specific use cases in mind, which limits their flexibility and usability. This can impose challenges for using a single model to compare different market designs. This paper introduces a new method of defining market designs for energy market simulations. The proposed concept makes it easy to incorporate different market designs into electricity market models by using relevant parameters derived from analyzing existing simulation tools, morphological categorization and ontologies. These parameters are then used to derive a market abstraction and integrate it into an agent-based simulation framework, allowing for a unified analysis of diverse market designs. Furthermore, we showcase the usability of integrating new types of long-term contracts and over-the-counter trading. To validate this approach, two case studies are demonstrated: a pay-as-clear market and a pay-as-bid long-term market. These examples demonstrate the capabilities of the proposed framework.
In times of social climate protection movements, such as Fridays for Future, the priorities of society, industry and higher education are currently changing. The consideration of sustainability challenges is increasing. In the context of sustainable development, social skills are crucial to achieving the United Nations Sustainable Development Goals (SDGs). In particular, the impact that educational activities have on people, communities and society is therefore coming to the fore. Research has shown that people with high levels of social competence are better able to manage stressful situations, maintain positive relationships and communicate effectively. They are also associated with better academic performance and career success. However, especially in engineering programs, the social pillar is underrepresented compared to the environmental and economic pillars.
In response to these changes, higher education institutions should be more aware of their social impact - from individual forms of teaching to entire modules and degree programs. To specifically determine the potential for improvement and derive resulting change for further development, we present an initial framework for social impact measurement by transferring already established approaches from the business sector to the education sector. To demonstrate the applicability, we measure the key competencies taught in undergraduate engineering programs in Germany.
The aim is to prepare the students for success in the modern world of work and their future contribution to sustainable development. Additionally, the university can include the results in its sustainability report. Our method can be applied to different teaching methods and enables their comparison.
Scientific questions
- How can a non-stationary heat offering in the commercial vehicle be used to reduce fuel consumption?
- Which potentials offer route and environmental information among with predicted speed and load trajectories to increase the efficiency of a ORC-System?
Methods
- Desktop bound holistic simulation model for a heavy duty truck incl. an ORC System
- Prediction of massflows, temperatures and mixture quality (AFR) of exhaust gas
The planned coal phase-out in Germany by 2038 will lead to the dismantling of power plants with a total capacity of approx. 30 GW. A possible further use of these assets is the conversion of the power plants to thermal storage power plants; the use of these power plants on the day-ahead market is considerably limited by their technical parameters. In this paper, the influence of the technical boundary conditions on the operating times of these storage facilities is presented. For this purpose, the storage power plants were described as an MILP problem and two price curves, one from 2015 with a relatively low renewable penetration (33 %) and one from 2020 with a high renewable energy penetration (51 %) are compared. The operating times were examined as a function of the technical parameters and the critical influencing factors were investigated. The thermal storage power plant operation duration and the energy shifted with the price curve of 2020
increases by more than 25 % compared to 2015.
A German–Brazilian research project investigates sugarcane as an energy plant in anaerobic digestion for biogas production. The aim of the project is a continuous, efficient, and stable biogas process with sugarcane as the substrate. Tests are carried out in a fermenter with a volume of 10 l.
In order to optimize the space–time load to achieve a stable process, a continuous process in laboratory scale has been devised. The daily feed in quantity and the harvest time of the substrate sugarcane has been varied. Analyses of the digester content were conducted twice per week to monitor the process: The ratio of inorganic carbon content to volatile organic acid content (VFA/TAC), the concentration of short-chain fatty acids, the organic dry matter, the pH value, and the total nitrogen, phosphate, and ammonium concentrations were monitored. In addition, the gas quality (the percentages of CO₂, CH₄, and H₂) and the quantity of the produced gas were analyzed.
The investigations have exhibited feasible and economical production of biogas in a continuous process with energy cane as substrate. With a daily feeding rate of 1.68gᵥₛ/l*d the average specific gas formation rate was 0.5 m3/kgᵥₛ. The long-term study demonstrates a surprisingly fast metabolism of short-chain fatty acids. This indicates a stable and less susceptible process compared to other substrates.
In Anbetracht weltweit zunehmend strengerer klimapolitischer
Ziele steigt auch der Druck für Nutzfahrzeughersteller, effizientere und umweltfreundlichere
Technologien zu entwickeln. Den Blick bei der Bewertung dieser
ausschließlich auf die Fahrzeugnutzung zu richten, ist längst nicht mehr zufriedenstellend.
Im Rahmen dieser Analyse wird ein gegenwärtig auf dem Markt erwerblicher
und in deutschen Städten bereits seit Jahren betriebener Hybridbus
energetisch und ökologisch mit einem konventionell angetriebenen, nahezu baugleichen
Modell entlang des Lebensweges bewertet.
Nach Definition von Ziel und Untersuchungsrahmen wird ein Überblick auf bereits
durchgeführte Lebenszyklusanalysen zu Hybridbussen im Stadtverkehr gegeben
und Schlussfolgerungen für die anschließende Analyse abgeleitet. Diese
wird im Rahmen einer energetischen und ökologischen Bewertung beider Produktsysteme
anhand der Parameter "Primärenergieeinsatz" und "CO2äq Emissionen"
praktiziert. Der Fahrzeugrumpf beider Fahrzeuge des gleichen Modells
wird dabei als einheitlich angenommen, sodass bei dem Vergleich der Herstellung
vereinfacht nur die sich unterscheidenden Komponenten des Antriebstranges
berücksichtigt werden. Die Resultate der Wirkungsabschätzung werden als
Differenz des Hybridbusses gegenüber dem Referenzfahrzeug über die einzelnen
Lebenszyklusphasen dargestellt. Schließlich werden Prognosen getroffen, ab
welcher Strecke die bei der Herstellung erzeugten höheren CO2äq Emissionen
des Hybridantriebstranges gegenüber dem Referenzmodell ausgeglichen werden.