Wiley
Refine
Year of publication
Institute
- Fachbereich Medizintechnik und Technomathematik (51)
- INB - Institut für Nano- und Biotechnologien (37)
- Fachbereich Chemie und Biotechnologie (33)
- IfB - Institut für Bioengineering (19)
- Fachbereich Elektrotechnik und Informationstechnik (17)
- Fachbereich Energietechnik (14)
- Fachbereich Bauingenieurwesen (9)
- Fachbereich Maschinenbau und Mechatronik (4)
- Fachbereich Luft- und Raumfahrttechnik (3)
- Fachbereich Wirtschaftswissenschaften (2)
Document Type
- Article (125)
- Part of a Book (1)
- Conference: Meeting Abstract (1)
- Conference Proceeding (1)
Keywords
- Alkalihalobacillus okhensis (1)
- Anammox (1)
- Bacillaceae (1)
- Bemessung (1)
- Biotechnological application (1)
- Broad pH spectrum (1)
- EN AW 7075 (1)
- ES-FEM (1)
- Erdbebeneinwirkung (1)
- FS-FEM (1)
Silk-fibroin is utilized as a biocompatible and bioresorbable enzymeimmobilization matrix and exemplarily demonstrated for a screen-printedamperometric glucose biosensor. The silk-fibroin is derived from the silkwormBombyx mori. The enzyme immobilization matrix consisting of silk-fibroin,together with glucose oxidase from Aspergillus niger, is applied to a screen-printed carbon-based, biocompatible, and biodegradable working electrode ona flexible silk-fibroin substrate. The biosensor is characterized electrochemicallyat physiological glucose concentrations in the range from 0.5 to 10 mm. Theresults are compared to a “conventional” glucose biosensor, also fabricated ona flexible silk-fibroin substrate, however utilizing a laboratory standard enzymeimmobilization matrix based on bovine serum albumin and glutaraldehyde.Furthermore, the influence of pH (pH 5.5 to pH 8.0) and temperature variations(21 to 70 °C) on these two different immobilization matrices are studied.
The integration of EN AW 7075 aluminium in Body in White structures is a promising way to achieve weight savings, which in turn can make a significant contribution to reducing CO2-emissions. However, due to hot cracking susceptibility, conventional welding technologies offer limited possibilities to join the material. Therefore, laser beam welding in vacuum is introduced as a comparatively new joining technique. The investigations show, that it is possible to weld the EN AW 7075 alloy in an overlap joint configuration without pores or microcracks appearing in the weld seam. The weld seam has a very fine-grained structure, which presumably has a favourable effect on hot cracking mechanism. The prevention of cracking is likely due to the lower temperature gradient between the capillary wall and the fusion line caused by the low evaporation temperature due to the reduced pressure. The reduced temperature results in lower residual stresses, which presumably has a positive effect on the tendency to hot cracking. In addition, the fine-grained structures can absorb strain better than coarse grain structures, that usually occur in conventional laser beam welding.
The industrial production of citric acid, an ingredient in beverages, pharmaceuticals, and cosmetics, is based on microbial fermentation of glucose or sucrose. Given the elevated cost of these sugars, lignocellulosic biomass is emerging as a cost-effective and environmentally friendly feedstock for sustainable bioprocesses. However, fermentation of lignocellulosic materials requires that they are first broken down enzymatically. This can be achieved by the filamentous fungus Aspergillus niger, which has the ability to secrete hydrolytic enzymes and to produce citric acid. Here, we investigated the production of citric acid using a consolidated bioprocess, in which all conversion steps – from the solid substrate to the final product – occurred in a single process stage. The press cake derived from a perennial ryegrass (Lolium perenne) was used as substrate and glucose or the remaining press juice were utilized as an additional carbon source. Aspergillus niger produced citrate successfully only when the press cake was supplemented with press juice (2.1 ± 0.0 g kgDM−1) and especially glucose (84.7 ± 0.3 g kgDM−1). Confocal laser scanning microscopy revealed differences in fungal mycelia based on the carbon source supplemented. Overall, the results indicate the successful implementation of solid-state fermentation for the sustainable production of citric acid by A. niger fed on press cake.
The aim of the current study was to investigate the performance of integrated RF
transmit arrays with high channel count consisting of meander microstrip antennas
for body imaging at 7 T and to optimize the position and number of transmit ele-
ments. RF simulations using multiring antenna arrays placed behind the bore liner
were performed for realistic exposure conditions for body imaging. Simulations were
performed for arrays with as few as eight elements and for arrays with high channel
counts of up to 48 elements. The B1+ field was evaluated regarding the degrees of
freedom for RF shimming in the abdomen. Worst-case specific absorption rate
(SARwc ), SAR overestimation in the matrix compression, the number of virtual obser-
vation points (VOPs) and SAR efficiency were evaluated. Constrained RF shimming
was performed in differently oriented regions of interest in the body, and the devia-
tion from a target B1+ field was evaluated. Results show that integrated multiring
arrays are able to generate homogeneous B1+ field distributions for large FOVs, espe-
cially for coronal/sagittal slices, and thus enable body imaging at 7 T with a clinical
workflow; however, a low duty cycle or a high SAR is required to achieve homoge-
neous B1+ distributions and to exploit the full potential. In conclusion, integrated
arrays allow for high element counts that have high degrees of freedom for the pulse
optimization but also produce high SARwc , which reduces the SAR accuracy in the
VOP compression for low-SAR protocols, leading to a potential reduction in array
performance. Smaller SAR overestimations can increase SAR accuracy, but lead to a
high number of VOPs, which increases the computational cost for VOP evaluation
and makes online SAR monitoring or pulse optimization challenging. Arrays with
interleaved rings showed the best results in the study.
Amino acid-based surfactants are valuable compounds for cosmetic formulations. The chemical synthesis of acyl-amino acids is conventionally performed by the Schotten-Baumann reaction using fatty acyl chlorides, but aminoacylases have also been investigated for use in biocatalytic synthesis with free fatty acids. Aminoacylases and their properties are diverse; they belong to different peptidase families and show differences in substrate specificity and biocatalytic potential. Bacterial aminoacylases capable of synthesis have been isolated from Burkholderia, Mycolicibacterium, and Streptomyces. Although several proteases and peptidases from S. griseus have been described, no aminoacylases from this species have been identified yet. In this study, we investigated two novel enzymes produced by S. griseus DSM 40236ᵀ . We identified and cloned the respective genes and recombinantly expressed an α-aminoacylase (EC 3.5.1.14), designated SgAA, and an ε-lysine acylase (EC 3.5.1.17), designated SgELA, in S. lividans TK23. The purified aminoacylase SgAA was biochemically characterized, focusing on its hydrolytic activity to determine temperature- and pH optima and stabilities. The aminoacylase could hydrolyze various acetyl-amino acids at the Nα -position with a broad specificity regarding the sidechain. Substrates with longer acyl chains, like lauroyl-amino acids, were hydrolyzed to a lesser extent. Purified aminoacylase SgELA specific for the hydrolysis of Nε -acetyl-L-lysine was unstable and lost its enzymatic activity upon storage for a longer period but could initially be characterized. The pH optimum of SgELA was pH 8.0. While synthesis of acyl-amino acids was not observed with SgELA, SgAA catalyzed the synthesis of lauroyl-methionine.
Subtilisins from microbial sources, especially from the Bacillaceae family, are of particular interest for biotechnological applications and serve the currently growing enzyme market as efficient and novel biocatalysts. Biotechnological applications include use in detergents, cosmetics, leather processing, wastewater treatment and pharmaceuticals. To identify a possible candidate for the enzyme market, here we cloned the gene of the subtilisin SPFA from Fictibacillus arsenicus DSM 15822ᵀ (obtained through a data mining-based search) and expressed it in Bacillus subtilis DB104. After production and purification, the protease showed a molecular mass of 27.57 kDa and a pI of 5.8. SPFA displayed hydrolytic activity at a temperature optimum of 80 °C and a very broad pH optimum between 8.5 and 11.5, with high activity up to pH 12.5. SPFA displayed no NaCl dependence but a high NaCl tolerance, with decreasing activity up to concentrations of 5 m NaCl. The stability enhanced with increasing NaCl concentration. Based on its substrate preference for 10 synthetic peptide 4-nitroanilide substrates with three or four amino acids and its phylogenetic classification, SPFA can be assigned to the subgroup of true subtilisins. Moreover, SPFA exhibited high tolerance to 5% (w/v) SDS and 5% H₂O₂ (v/v). The biochemical properties of SPFA, especially its tolerance of remarkably high pH, SDS and H₂O₂, suggest it has potential for biotechnological applications.
The present work aimed to study the mainstream feasibility of the deammonifying sludge of side stream of municipal wastewater treatment plant (MWWTP) in Kaster, Germany. For this purpose, the deammonifying sludge available at the side stream was investigated for nitrogen (N) removal with respect to the operational factors temperature (15–30°C), pH value (6.0–8.0) and chemical oxygen demand (COD)/N ratio (≤1.5–6.0). The highest and lowest N-removal rates of 0.13 and 0.045 kg/(m³ d) are achieved at 30 and 15°C, respectively. Different conditions of pH and COD/N ratios in the SBRs of Partial nitritation/anammox (PN/A) significantly influenced both the metabolic processes and associated N-removal rates. The scientific insights gained from the current work signifies the possibility of mainstream PN/A at WWTPs. The current study forms a solid basis of operational window for the upcoming semi-technical trails to be conducted prior to the full-scale mainstream PN/A at WWTP Kaster and WWTPs globally.
It has been shown that muscle fascicle curvature increases with increasing contraction level and decreasing muscle–tendon complex length. The analyses were done with limited examination windows concerning contraction level, muscle–tendon complex length, and/or intramuscular position of ultrasound imaging. With this study we aimed to investigate the correlation between fascicle arching and contraction, muscle–tendon complex length and their associated architectural parameters in gastrocnemius muscles to develop hypotheses concerning the fundamental mechanism of fascicle curving. Twelve participants were tested in five different positions (90°/105°*, 90°/90°*, 135°/90°*, 170°/90°*, and 170°/75°*; *knee/ankle angle). They performed isometric contractions at four different contraction levels (5%, 25%, 50%, and 75% of maximum voluntary contraction) in each position. Panoramic ultrasound images of gastrocnemius muscles were collected at rest and during constant contraction. Aponeuroses and fascicles were tracked in all ultrasound images and the parameters fascicle curvature, muscle–tendon complex strain, contraction level, pennation angle, fascicle length, fascicle strain, intramuscular position, sex and age group were analyzed by linear mixed effect models. Mean fascicle curvature of the medial gastrocnemius increased with contraction level (+5 m−1 from 0% to 100%; p = 0.006). Muscle–tendon complex length had no significant impact on mean fascicle curvature. Mean pennation angle (2.2 m−1 per 10°; p < 0.001), inverse mean fascicle length (20 m−1 per cm−1; p = 0.003), and mean fascicle strain (−0.07 m−1 per +10%; p = 0.004) correlated with mean fascicle curvature. Evidence has also been found for intermuscular, intramuscular, and sex-specific intramuscular differences of fascicle curving. Pennation angle and the inverse fascicle length show the highest predictive capacities for fascicle curving. Due to the strong correlations between pennation angle and fascicle curvature and the intramuscular pattern of curving we suggest for future studies to examine correlations between fascicle curvature and intramuscular fluid pressure.
In this study, the performance of an integrated body-imaging array for 7 T with 32 radiofrequency (RF) channels under consideration of local specific absorption rate (SAR), tissue temperature, and thermal dose limits was evaluated and the imaging performance was compared with a clinical 3 T body coil.
Thirty-two transmit elements were placed in three rings between the bore liner and RF shield of the gradient coil. Slice-selective RF pulse optimizations for B1 shimming and spokes were performed for differently oriented slices in the body under consideration of realistic constraints for power and local SAR. To improve the B1+ homogeneity, safety assessments based on temperature and thermal dose were performed to possibly allow for higher input power for the pulse optimization than permissible with SAR limits.
The results showed that using two spokes, the 7 T array outperformed the 3 T birdcage in all the considered regions of interest. However, a significantly higher SAR or lower duty cycle at 7 T is necessary in some cases to achieve similar B1+ homogeneity as at 3 T. The homogeneity in up to 50 cm-long coronal slices can particularly benefit from the high RF shim performance provided by the 32 RF channels. The thermal dose approach increases the allowable input power and the corresponding local SAR, in one example up to 100 W/kg, without limiting the exposure time necessary for an MR examination.
In conclusion, the integrated antenna array at 7 T enables a clinical workflow for body imaging and comparable imaging performance to a conventional 3 T clinical body coil.