Refine
Year of publication
- 2021 (28)
- 2020 (160)
- 2019 (236)
- 2018 (199)
- 2017 (217)
- 2016 (235)
- 2015 (262)
- 2014 (248)
- 2013 (269)
- 2012 (284)
- 2011 (296)
- 2010 (305)
- 2009 (316)
- 2008 (286)
- 2007 (265)
- 2006 (269)
- 2005 (258)
- 2004 (283)
- 2003 (214)
- 2002 (229)
- 2001 (209)
- 2000 (229)
- 1999 (229)
- 1998 (231)
- 1997 (212)
- 1996 (199)
- 1995 (192)
- 1994 (174)
- 1993 (154)
- 1992 (144)
- 1991 (100)
- 1990 (107)
- 1989 (110)
- 1988 (103)
- 1987 (105)
- 1986 (81)
- 1985 (83)
- 1984 (74)
- 1983 (70)
- 1982 (57)
- 1981 (54)
- 1980 (61)
- 1979 (58)
- 1978 (52)
- 1977 (32)
- 1976 (30)
- 1975 (29)
- 1974 (17)
- 1973 (12)
- 1972 (17)
- 1971 (11)
- 1970 (2)
- 1969 (2)
- 1968 (2)
- 1967 (1)
- 1963 (1)
- (28)
Document Type
- Article (5212)
- Conference Proceeding (1109)
- Book (1022)
- Part of a Book (407)
- Patent (165)
- Doctoral Thesis (66)
- Report (58)
- Other (49)
- Contribution to a Periodical (17)
- Working Paper (6)
- Review (4)
- Diploma Thesis (3)
- Habilitation (3)
- Master's Thesis (3)
- Video (2)
- Talk (2)
- Bachelor Thesis (1)
- Examination Thesis (1)
- Part of Periodical (1)
Has Fulltext
- no (8131) (remove)
Keywords
- avalanche (6)
- Aktionskunst (4)
- Papierkunst (4)
- metal structure (4)
- snow (4)
- steel (4)
- industrial research (3)
- iron and steel industry (3)
- materials technology (3)
- research report (3)
- Energierecht (2)
- Geschichte (2)
- Hydrogen (2)
- Illustration (2)
- Interaktive Kunst (2)
- Kommunikationsguerrilla (2)
- Konsumgesellschaft (2)
- Mathematik (2)
- Stadtgestaltung (2)
- Streetart (2)
Institute
- Fachbereich Medizintechnik und Technomathematik (1749)
- Fachbereich Wirtschaftswissenschaften (985)
- Fachbereich Elektrotechnik und Informationstechnik (953)
- Fachbereich Energietechnik (944)
- Fachbereich Chemie und Biotechnologie (804)
- Fachbereich Maschinenbau und Mechatronik (772)
- Fachbereich Luft- und Raumfahrttechnik (649)
- Fachbereich Bauingenieurwesen (594)
- INB - Institut für Nano- und Biotechnologien (553)
- IfB - Institut für Bioengineering (488)
- Solar-Institut Jülich (289)
- Fachbereich Architektur (146)
- Fachbereich Gestaltung (146)
- ZHQ - Bereich Hochschuldidaktik und Evaluation (62)
- Nowum-Energy (56)
- MASKOR Institut für Mobile Autonome Systeme und Kognitive Robotik (48)
- ECSM European Center for Sustainable Mobility (29)
- Institut fuer Angewandte Polymerchemie (29)
- Sonstiges (24)
- Freshman Institute (18)
Bitcoin is a cryptocurrency and is considered a high-risk asset
class whose price changes are difficult to predict. Current research focusses
on daily price movements with a limited number of predictors. The paper at
hand aims at identifying measurable indicators for Bitcoin price movement s
and the development of a suitable forecasting model for hourly changes. The
paper provides three research contributions. First, a set of significant
indicators for predicting the Bitcoin price is identified. Second, the results of
a trained Long Short-term Memory (LSTM) neural network that predicts
price changes on an hourly basis is presented and compared with other
algorithms. Third, the results foster discussions of the applicability of neural
nets for stock price predictions. In total, 47 input features for a period of
over 10 months could be retrieved to train a neural net that predicts the
Bitcoin price movements with an error rate of 3.52 %.