### Refine

#### Year of publication

#### Document Type

- Article (18)
- Conference Proceeding (1)
- Doctoral Thesis (1)
- Habilitation (1)

#### Keywords

- Paired sample (3)
- Empirical process (2)
- Goodness-of-fit test (2)
- Incomplete data (2)
- Independence test (2)
- Parametric bootstrap (2)
- likelihood ratio test (2)
- not identically distributed (2)
- Asymptotic relative efficiency (1)
- Bahadur efficiency (1)
- Bootstrap (1)
- Bootstrapping (1)
- Brownian Pillow (1)
- Categorial variable (1)
- Collective risk model (1)
- Concomitant (1)
- Coverage probability (1)
- Cramér-von-Mises statistic (1)
- Cramér-von-Mises test (1)
- Crámer–von-Mises distance (1)

Inference on the basis of high-dimensional and functional data are two topics which are discussed frequently in the current statistical literature. A possibility to include both topics in a single approach is working on a very general space for the underlying observations, such as a separable Hilbert space. We propose a general method for consistently hypothesis testing on the basis of random variables with values in separable Hilbert spaces. We avoid concerns with the curse of dimensionality due to a projection idea. We apply well-known test statistics from nonparametric inference to the projected data and integrate over all projections from a specific set and with respect to suitable probability measures. In contrast to classical methods, which are applicable for real-valued random variables or random vectors of dimensions lower than the sample size, the tests can be applied to random vectors of dimensions larger than the sample size or even to functional and high-dimensional data. In general, resampling procedures such as bootstrap or permutation are suitable to determine critical values. The idea can be extended to the case of incomplete observations. Moreover, we develop an efficient algorithm for implementing the method. Examples are given for testing goodness-of-fit in a one-sample situation in [1] or for testing marginal homogeneity on the basis of a paired sample in [2]. Here, the test statistics in use can be seen as generalizations of the well-known Cramérvon-Mises test statistics in the one-sample and two-samples case. The treatment of other testing problems is possible as well. By using the theory of U-statistics, for instance, asymptotic null distributions of the test statistics are obtained as the sample size tends to infinity. Standard continuity assumptions ensure the asymptotic exactness of the tests under the null hypothesis and that the tests detect any alternative in the limit. Simulation studies demonstrate size and power of the tests in the finite sample case, confirm the theoretical findings, and are used for the comparison with concurring procedures. A possible application of the general approach is inference for stock market returns, also in high data frequencies. In the field of empirical finance, statistical inference of stock market prices usually takes place on the basis of related log-returns as data. In the classical models for stock prices, i.e., the exponential Lévy model, Black-Scholes model, and Merton model, properties such as independence and stationarity of the increments ensure an independent and identically structure of the data. Specific trends during certain periods of the stock price processes can cause complications in this regard. In fact, our approach can compensate those effects by the treatment of the log-returns as random vectors or even as functional data.

On the basis of independent and identically distributed bivariate random vectors, where the components are categorial and continuous variables, respectively, the related concomitants, also called induced order statistic, are considered. The main theoretical result is a functional central limit theorem for the empirical process of the concomitants in a triangular array setting. A natural application is hypothesis testing. An independence test and a two-sample test are investigated in detail. The fairly general setting enables limit results under local alternatives and bootstrap samples. For the comparison with existing tests from the literature simulation studies are conducted. The empirical results obtained confirm the theoretical findings.

In the context of the Solvency II directive, the operation of an internal risk model is a possible way for risk assessment and for the determination of the solvency capital requirement of an insurance company in the European Union. A Monte Carlo procedure is customary to generate a model output. To be compliant with the directive, validation of the internal risk model is conducted on the basis of the model output. For this purpose, we suggest a new test for checking whether there is a significant change in the modeled solvency capital requirement. Asymptotic properties of the test statistic are investigated and a bootstrap approximation is justified. A simulation study investigates the performance of the test in the finite sample case and confirms the theoretical results. The internal risk model and the application of the test is illustrated in a simplified example. The method has more general usage for inference of a broad class of law-invariant and coherent risk measures on the basis of a paired sample.

The established Hoeffding-Blum-Kiefer-Rosenblatt independence test statistic is investigated for partly not identically distributed data. Surprisingly, it turns out that the statistic has the well-known distribution-free limiting null distribution of the classical criterion under standard regularity conditions. An application is testing goodness-of-fit for the regression function in a non parametric random effects meta-regression model, where the consistency is obtained as well. Simulations investigate size and power of the approach for small and moderate sample sizes. A real data example based on clinical trials illustrates how the test can be used in applications.

We discuss the testing problem of homogeneity of the marginal distributions of a continuous bivariate distribution based on a paired sample with possibly missing components (missing completely at random). Applying the well-known two-sample Crámer–von-Mises distance to the remaining data, we determine the limiting null distribution of our test statistic in this situation. It is seen that a new resampling approach is appropriate for the approximation of the unknown null distribution. We prove that the resulting test asymptotically reaches the significance level and is consistent. Properties of the test under local alternatives are pointed out as well. Simulations investigate the quality of the approximation and the power of the new approach in the finite sample case. As an illustration we apply the test to real data sets.

On the basis of bivariate data, assumed to be observations of independent copies of a random vector (S,N), we consider testing the hypothesis that the distribution of (S,N) belongs to the parametric class of distributions that arise with the compound Poisson exponential model. Typically, this model is used in stochastic hydrology, with N as the number of raindays, and S as total rainfall amount during a certain time period, or in actuarial science, with N as the number of losses, and S as total loss expenditure during a certain time period. The compound Poisson exponential model is characterized in the way that a specific transform associated with the distribution of (S,N) satisfies a certain differential equation. Mimicking the function part of this equation by substituting the empirical counterparts of the transform we obtain an expression the weighted integral of the square of which is used as test statistic. We deal with two variants of the latter, one of which being invariant under scale transformations of the S-part by fixed positive constants. Critical values are obtained by using a parametric bootstrap procedure. The asymptotic behavior of the tests is discussed. A simulation study demonstrates the performance of the tests in the finite sample case. The procedure is applied to rainfall data and to an actuarial dataset. A multivariate extension is also discussed.

The Rothman–Woodroofe symmetry test statistic is revisited on the basis of independent but not necessarily identically distributed random variables. The distribution-freeness if the underlying distributions are all symmetric and continuous is obtained. The results are applied for testing symmetry in a meta-analysis random effects model. The consistency of the procedure is discussed in this situation as well. A comparison with an alternative proposal from the literature is conducted via simulations. Real data are analyzed to demonstrate how the new approach works in practice.

The paper deals with an asymptotic relative efficiency concept for confidence regions of multidimensional parameters that is based on the expected volumes of the confidence regions. Under standard conditions the asymptotic relative efficiencies of confidence regions are seen to be certain powers of the ratio of the limits of the expected volumes. These limits are explicitly derived for confidence regions associated with certain plugin estimators, likelihood ratio tests and Wald tests. Under regularity conditions, the asymptotic relative efficiency of each of these procedures with respect to each one of its competitors is equal to 1. The results are applied to multivariate normal distributions and multinomial distributions in a fairly general setting.

Suppose we have k samples X₁,₁,…,X₁,ₙ₁,…,Xₖ,₁,…,Xₖ,ₙₖ with different sample sizes ₙ₁,…,ₙₖ and unknown underlying distribution functions F₁,…,Fₖ as observations plus k families of distribution functions {G₁(⋅,ϑ);ϑ∈Θ},…,{Gₖ(⋅,ϑ);ϑ∈Θ}, each indexed by elements ϑ from the same parameter set Θ, we consider the new goodness-of-fit problem whether or not (F₁,…,Fₖ) belongs to the parametric family {(G₁(⋅,ϑ),…,Gₖ(⋅,ϑ));ϑ∈Θ}. New test statistics are presented and a parametric bootstrap procedure for the approximation of the unknown null distributions is discussed. Under regularity assumptions, it is proved that the approximation works asymptotically, and the limiting distributions of the test statistics in the null hypothesis case are determined. Simulation studies investigate the quality of the new approach for small and moderate sample sizes. Applications to real-data sets illustrate how the idea can be used for verifying model assumptions.

A nonparametric goodness-of-fit test for random variables with values in a separable Hilbert space is investigated. To verify the null hypothesis that the data come from a specific distribution, an integral type test based on a Cramér-von-Mises statistic is suggested. The convergence in distribution of the test statistic under the null hypothesis is proved and the test's consistency is concluded. Moreover, properties under local alternatives are discussed. Applications are given for data of huge but finite dimension and for functional data in infinite dimensional spaces. A general approach enables the treatment of incomplete data. In simulation studies the test competes with alternative proposals.