Refine
Year of publication
Institute
Has Fulltext
- no (27)
Document Type
- Article (12)
- Conference Proceeding (7)
- Book (5)
- Part of a Book (3)
Keywords
- Bloom Taxonomy (1)
- COMSOL Multiphysics (1)
- Fracture classification (1)
- Future skills (1)
- Hilbert Room (1)
- Imaging (1)
- Key competences (1)
- LiveLink for MATLAB (1)
- Morphing (1)
- Operators (1)
Often, detailed simulations of heat conduction in complicated, porous media have large runtimes. Then homogenization is a powerful tool to speed up the calculations by preserving accurate solutions at the same time. Unfortunately real structures are generally non-periodic, which requires unpractical, complicated homogenization techniques. We demonstrate in this paper, that the application of simple, periodic techniques to realistic media, that are just close to periodic, gives accurate, approximative solutions. In order to obtain effective parameters for the homogenized heat equation, we have to solve a so called “cell problem”. In contrast to periodic structures it is not trivial to determine a suitable unit cell, which represents a non-periodic media. To overcome this problem, we give a rule of thumb on how to choose a good cell. Finally we demonstrate the efficiency of our method for virtually generated foams as well as real foams and compare these results to periodic structures.
Numerical solution of the heat equation with non-linear, time derivative-dependent source term
(2010)
The mathematical modeling of heat conduction with adsorption effects in coated metal structures yields the heat equation with piecewise smooth coefficients and a new kind of source term. This term is special, because it is non-linear and furthermore depends on a time derivative. In our approach we reformulated this as a new problem for the usual heat equation, without source term but with a new non-linear coefficient. We gave an existence and uniqueness proof for the weak solution of the reformulated problem. To obtain a numerical solution, we developed a semi-implicit and a fully implicit finite volume method. We compared these two methods theoretically as well as numerically. Finally, as practical application, we simulated the heat conduction in coated aluminum fibers with adsorption in the zeolite coating. Copyright © 2010 John Wiley & Sons, Ltd.
This paper describes two courses on
simulation methods for graduate students:
“Simulation Methods” and “Simulation and
Optimization in Virtual Engineering” The
courses were planned to teach young engineers
how to work with simulation software as well as
to understand the necessary mathematical background.
As simulation software COMSOL is
used. The main philosophy was to combine
theory and praxis in a way that motivates the
students. In addition “soft skills” should be
improved. This was achieved by project work as
final examination. As underlying didactical principle
the ideas of Bloom’s revised taxonomy
were followed. The paper basically focusses on
educational aspects, e.g. how to structure the
course, plan the exercises, organize the project
work and include practical COMSOL examples.