Refine
Year of publication
Institute
Has Fulltext
- no (27)
Document Type
- Article (12)
- Conference Proceeding (7)
- Book (5)
- Part of a Book (3)
Keywords
- Bloom Taxonomy (1)
- COMSOL Multiphysics (1)
- Fracture classification (1)
- Future skills (1)
- Hilbert Room (1)
- Imaging (1)
- Key competences (1)
- LiveLink for MATLAB (1)
- Morphing (1)
- Operators (1)
Heat production in the windings of the stators of electric machines under stationary condition
(2014)
In electric machines due to high currents and resistive losses (joule heating) heat is produced. To avoid damages by overheating the design of effective cooling systems is required. Therefore the knowledge of heat sources and heat transfer processes is necessary. The purpose of this paper is to illustrate a good and effective calculation method for the temperature analysis based on homogenization techniques. These methods have been applied for the stator windings in a slot of an electric machine consisting of copper wires and resin. The key quantity here is an effective thermal conductivity, which characterizes the heterogeneous wire resin-arrangement inside the stator slot. To illustrate the applicability of the method, the analysis of a simplified, homogenized model is compared with the detailed analysis of temperature behavior inside a slot of an electric machine according to the heat generation. We considered here only the stationary situation. The achieved numerical results are accurate and show that the applied homogenization technique works in practice. Finally the results of simulations for the two cases, the original model of the slot and the homogenized model chosen for the slot (unit cell), are compared to experimental results.
Mathematik PLuS als E-Book. Kann ein E-Book zur Ingenieursmathematik alle Lerntypen ansprechen?
(2017)
Due to the Renewable Energy Act, in Germany it is planned to increase the amount of renewable energy carriers up to 60%. One of the main problems is the fluctuating supply of wind and solar energy. Here biogas plants provide a solution, because a demand-driven supply is possible. Before running such a plant, it is necessary to simulate and optimize the process. This paper provides a new model of a biogas plant, which is as accurate as the standard ADM1 model. The advantage compared to ADM1 is that it is based on only four parameters compared to 28. Applying this model, an optimization was installed, which allows a demand-driven supply by biogas plants. Finally the results are confirmed by several experiments and measurements with a real test plant.