Refine
Institute
Has Fulltext
- no (10)
Document Type
- Conference Proceeding (7)
- Article (2)
- Part of a Book (1)
Keywords
- Automation (1)
- Control (1)
- Mpc (1)
- Navigation (1)
- Path-following (1)
The Carologistics team participates in the RoboCup Logistics League for the seventh year. The RCLL requires precise vision,
manipulation and path planning, as well as complex high-level decision
making and multi-robot coordination. We outline our approach with an
emphasis on recent modifications to those components.
The team members in 2018 are David Bosen, Christoph Gollok, Mostafa
Gomaa, Daniel Habering, Till Hofmann, Nicolas Limpert, Sebastian Schönitz,
Morian Sonnet, Carsten Stoffels, and Tarik Viehmann.
This paper is based on the last year’s team description.
The RoboCup Logistics League (RCLL) is a robotics competition in a production logistics scenario in the context of a Smart Factory. In the competition, a team of three robots needs to assemble products to fulfill various orders that are requested online during the game. This year, the Carologistics team was able to win the competition with a new approach to multi-agent coordination as well as significant changes to the robot’s perception unit and a pragmatic network setup using the cellular network instead of WiFi. In this paper, we describe the major components of our approach with a focus on the changes compared to the last physical competition in 2019.
The work in modern open-pit and underground mines requires the transportation of large amounts of resources between fixed points. The navigation to these fixed points is a repetitive task that can be automated. The challenge in automating the navigation of vehicles commonly used in mines is the systemic properties of such vehicles. Many mining vehicles, such as the one we have used in the research for this paper, use steering systems with an articulated joint bending the vehicle’s drive axis to change its course and a hydraulic drive system to actuate axial drive components or the movements of tippers if available. To address the difficulties of controlling such a vehicle, we present a model-predictive approach for controlling the vehicle. While the control optimisation based on a parallel error minimisation of the predicted state has already been established in the past, we provide insight into the design and implementation of an MPC for an articulated mining vehicle and show the results of real-world experiments in an open-pit mine environment.
The Robot Operating System (ROS) is the current de-facto standard in robot middlewares. The steadily increasing size of the user base results in a greater demand for training as well. User groups range from students in academia to industry professionals with a broad spectrum of developers in between. To deliver high quality training and education to any of these audiences, educators need to tailor individual curricula for any such training. In this paper, we present an approach to ease compiling curricula for ROS trainings based on a taxonomy of the teaching contents. The instructor can select a set of dedicated learning units and the system will automatically compile the teaching material based on the dependencies of the units selected and a set of parameters for a particular training. We walk through an example training to illustrate our work.
In this chapter, we report on our activities to create and maintain a fleet of autonomous load haul dump (LHD) vehicles for mining operations. The ever increasing demand for sustainable solutions and economic pressure causes innovation in the mining industry just like in any other branch. In this chapter, we present our approach to create a fleet of autonomous special purpose vehicles and to control these vehicles in mining operations. After an initial exploration of the site we deploy the fleet. Every vehicle is running an instance of our ROS 2-based architecture. The fleet is then controlled with a dedicated planning module. We also use continuous environment monitoring to implement a life-long mapping approach. In our experiments, we show that a combination of synthetic, augmented and real training data improves our classifier based on the deep learning network Yolo v5 to detect our vehicles, persons and navigation beacons. The classifier was successfully installed on the NVidia AGX-Drive platform, so that the abovementioned objects can be recognised during the dumper drive. The 3D poses of the detected beacons are assigned to lanelets and transferred to an existing map.