- Urban Search and Rescue (USAR) is an active research
field in the robotics community. Despite recent advances
for many open research questions, these kind of systems are
not widely used in real rescue missions. One reason is that such
systems are complex and not (yet) very reliable; another is that
one has to be an robotic expert to run such a system. Moreover,
available rescue robots are very expensive and the benefits of
using them are still limited.
In this paper, we present the Scarab robot, an alternative
design for a USAR robot. The robot is light weight, humanpackable
and its primary purpose is that of extending the
rescuer’s capability to sense the disaster site. The idea is that a
responder throws the robot to a certain spot. The robot survives
the impact with the ground and relays sensor data such as
camera images or thermal images to the responder’s hand-held
control unit from which the robot can be remotely controlled.