Refine
Year of publication
- 2022 (305) (remove)
Institute
- Fachbereich Gestaltung (106)
- Fachbereich Medizintechnik und Technomathematik (52)
- Fachbereich Energietechnik (37)
- IfB - Institut für Bioengineering (28)
- ECSM European Center for Sustainable Mobility (23)
- Fachbereich Chemie und Biotechnologie (20)
- Fachbereich Elektrotechnik und Informationstechnik (19)
- Fachbereich Wirtschaftswissenschaften (17)
- Fachbereich Luft- und Raumfahrttechnik (15)
- Fachbereich Maschinenbau und Mechatronik (15)
Language
- German (157)
- English (147)
- Multiple languages (1)
Document Type
- Bachelor Thesis (94)
- Article (93)
- Conference Proceeding (49)
- Part of a Book (31)
- Book (11)
- Master's Thesis (11)
- Conference: Meeting Abstract (5)
- Report (3)
- Conference Poster (2)
- Other (2)
Keywords
- Illustration (8)
- Fotografie (6)
- Gesundheit (6)
- App (5)
- Erscheinungsbild (5)
- Kampagne (4)
- Kurzfilm (4)
- Animation (3)
- Concentrated solar power (3)
- Corporate Design (3)
Zugriffsart
- weltweit (100)
- campus (81)
- bezahl (20)
- fachbereichsweit (FB4) (12)
Purpose: A precise determination of the corneal diameter is essential for the diagnosis of various ocular diseases, cataract and refractive surgery as well as for the selection and fitting of contact lenses. The aim of this study was to investigate the agreement between two automatic and one manual method for corneal diameter determination and to evaluate possible diurnal variations in corneal diameter.
Patients and Methods: Horizontal white-to-white corneal diameter of 20 volunteers was measured at three different fixed times of a day with three methods: Scheimpflug method (Pentacam HR, Oculus), placido based topography (Keratograph 5M, Oculus) and manual method using an image analysis software at a slitlamp (BQ900, Haag-Streit).
Results: The two-factorial analysis of variance could not show a significant effect of the different instruments (p = 0.117), the different time points (p = 0.506) and the interaction between instrument and time point (p = 0.182). Very good repeatability (intraclass correlation coefficient ICC, quartile coefficient of dispersion QCD) was found for all three devices. However, manual slitlamp measurements showed a higher QCD than the automatic measurements with the Keratograph 5M and the Pentacam HR at all measurement times.
Conclusion: The manual and automated methods used in the study to determine corneal diameter showed good agreement and repeatability. No significant diurnal variations of corneal diameter were observed during the period of time studied.
Chromatography is the workhorse of biopharmaceutical downstream processing because it can selectively enrich a target product while removing impurities from complex feed streams. This is achieved by exploiting differences in molecular properties, such as size, charge and hydrophobicity (alone or in different combinations). Accordingly, many parameters must be tested during process development in order to maximize product purity and recovery, including resin and ligand types, conductivity, pH, gradient profiles, and the sequence of separation operations. The number of possible experimental conditions quickly becomes unmanageable. Although the range of suitable conditions can be narrowed based on experience, the time and cost of the work remain high even when using high-throughput laboratory automation. In contrast, chromatography modeling using inexpensive, parallelized computer hardware can provide expert knowledge, predicting conditions that achieve high purity and efficient recovery. The prediction of suitable conditions in silico reduces the number of empirical tests required and provides in-depth process understanding, which is recommended by regulatory authorities. In this article, we discuss the benefits and specific challenges of chromatography modeling. We describe the experimental characterization of chromatography devices and settings prior to modeling, such as the determination of column porosity. We also consider the challenges that must be overcome when models are set up and calibrated, including the cross-validation and verification of data-driven and hybrid (combined data-driven and mechanistic) models. This review will therefore support researchers intending to establish a chromatography modeling workflow in their laboratory.
Architecture is a university subject with educational roots in both the technical university and art/specialized architecture schools, yet it lacks a strong research orientation and is focused on professional expertise. This chapter explores the particular role of research within architectural education in general by discussing two different cases for the implementation of undergraduate research in architecture: during the late 1990s and early 2000s at the University of Sheffield, UK, and during the 2010s at RWTH Aachen University, Germany. These examples illustrate the asynchronous beginnings of similar developments, and also contextualize differences in disciplinary habitus and pedagogical approaches between Sheffield, where research impulses stemmed from within the Architectural Humanities, and Aachen with its strong tradition as a technical university.
Cure or blessing? The effect of (non-financial) signals on sustainable venture's funding success
(2022)
This dissertation uses in first stage a macroeconomic investigation to examine the dependence, influence and corruption of socio-economic development through effects of sustainability and resource management. The conducted research found that the state's dependence on its citizens decreases when the state's sources of revenue are largely detached and independent of the citizens' financial resources. In this case, financial resources are taxes and duties provided by the citizens. One possible consequence is the restriction of state investment in its citizens. Both the qualitative literature review and the quantitative data analysis revealed a negative correlation between socio-economic development and the resource economy's share of GDP for the period under study. The microeconomic investigation was primarily conducted through an intensive literature review. It was shown that the rebound effect as such is already very well researched. However, it also became clear that avoidance strategies for the rebound effect and links to sustainability initiatives are scarce or non-existent. The need for a redesign of the impact analysis with regard to technological innovations and their influence on resource consumption and resource management has become clear on the basis of the present study. Further, emerging and developing countries in particular, which will be confronted in the foreseeable future not only with the fundamental problems of resource abundance in the overall economic context, but also with the issues of their sustainable use, should be confronted with these problems as early as possible in order to find solutions in a timely manner.
The replacement of existing spillway crests or gates with labyrinth weirs is a proven techno-economical means to increase the discharge capacity when rehabilitating existing structures. However, additional information is needed regarding energy dissipation of such weirs, since due to the folded weir crest, a three-dimensional flow field is generated, yielding more complex overflow and energy dissipation processes. In this study, CFD simulations of labyrinth weirs were conducted 1) to analyze the discharge coefficients for different discharges to compare the Cd values to literature data and 2) to analyze and improve energy dissipation downstream of the structure. All tests were performed for a structure at laboratory scale with a height of approx. P = 30.5 cm, a ratio of the total crest length to the total width of 4.7, a sidewall angle of 10° and a quarter-round weir crest shape. Tested headwater ratios were 0.089 ≤ HT/P ≤ 0.817. For numerical simulations, FLOW-3D Hydro was employed, solving the RANS equations with use of finite-volume method and RNG k-ε turbulence closure. In terms of discharge capacity, results were compared to data from physical model tests performed at the Utah Water Research Laboratory (Utah State University), emphasizing higher discharge coefficients from CFD than from the physical model. For upstream heads, some discrepancy in the range of ± 1 cm between literature, CFD and physical model tests was identified with a discussion regarding differences included in the manuscript. For downstream energy dissipation, variable tailwater depths were considered to analyze the formation and sweep-out of a hydraulic jump. It was found that even for high discharges, relatively low downstream Froude numbers were obtained due to high energy dissipation involved by the three-dimensional flow between the sidewalls. The effects of some additional energy dissipation devices, e.g. baffle blocks or end sills, were also analyzed. End sills were found to be non-effective. However, baffle blocks with different locations may improve energy dissipation downstream of labyrinth weirs.
Non-intrusive measuring techniques have attained a lot of interest in relation to both hydraulic modeling and prototype applications. Complimenting acoustic techniques, significant progress has been made for the development of new optical methods. Computer vision techniques can help to extract new information, e. g. high-resolution velocity and depth data, from videos captured with relatively inexpensive, consumer-grade cameras. Depth cameras are sensors providing information on the distance between the camera and observed features. Currently, sensors with different working principles are available. Stereoscopic systems reference physical image features (passive system) from two perspectives; in order to enhance the number of features and improve the results, a sensor may also estimate the disparity from a detected light to its original projection (active stereo system). In the current study, the RGB-D camera Intel RealSense D435, working on such stereo vision principle, is used in different, typical hydraulic modeling applications. All tests have been conducted at the Utah Water Research Laboratory. This paper will demonstrate the performance and limitations of the RGB-D sensor, installed as a single camera and as camera arrays, applied to 1) detect the free surface for highly turbulent, aerated hydraulic jumps, for free-falling jets and for an energy dissipation basin downstream of a labyrinth weir and 2) to monitor local scours upstream and downstream of a Piano Key Weir. It is intended to share the authors’ experiences with respect to camera settings, calibration, lightning conditions and other requirements in order to promote this useful, easily accessible device. Results will be compared to data from classical instrumentation and the literature. It will be shown that even in difficult application, e. g. the detection of a highly turbulent, fluctuating free-surface, the RGB-D sensor may yield similar accuracy as classical, intrusive probes.
Electric flight has the potential for a more sustainable and energy-saving way of aviation compared to fossil fuel aviation. The electric motor can be used as a generator inflight to regenerate energy during descent. Three different approaches to regenerating with electric propeller powertrains are proposed in this paper. The powertrain is to be set up in a wind tunnel to determine the propeller efficiency in both working modes as well as the noise emissions. Furthermore, the planned flight tests are discussed. In preparation for these tests, a yaw stability analysis is performed with the result that the aeroplane is controllable during flight and in the most critical failure case. The paper shows the potential for inflight regeneration and addresses the research gaps in the dual role of electric powertrains for propulsion and regeneration of general aviation aircraft.
The development and operation of hybrid or purely electrically powered aircraft in regional air mobility is a significant challenge for the entire aviation sector. This technology is expected to lead to substantial advances in flight performance, energy efficiency, reliability, safety, noise reduction, and exhaust emissions. Nevertheless, any consumed energy results in heat or carbon dioxide emissions and limited electric energy storage capabilities suppress commercial use. Therefore, the significant challenges to achieving eco-efficient aviation are increased aircraft efficiency, the development of new energy storage technologies, and the optimization of flight operations. Two major approaches for higher eco-efficiency are identified: The first one, is to take horizontal and vertical atmospheric motion phenomena into account. Where, in particular, atmospheric waves hold exciting potential. The second one is the use of the regeneration ability of electric aircraft. The fusion of both strategies is expected to improve efficiency. The objective is to reduce energy consumption during flight while not neglecting commercial usability and convenient flight characteristics. Therefore, an optimized control problem based on a general aviation class aircraft has to be developed and validated by flight experiments. The formulated approach enables a development of detailed knowledge of the potential and limitations of optimizing flight missions, considering the capability of regeneration and atmospheric influences to increase efficiency and range.
Open Data impliziert die freie Zugänglichkeit, Verfügbarkeit und Wiederverwendbarkeit von Datensätzen. Obwohl hochwertige Datensätze öffentlich verfügbar sind, ist der Zugang zu diesen und die Transparenz über die Formate nicht immer gegeben. Dies mindert die optimale Nutzung des Potenzials zur Wertschöpfung, trotz der vorherrschenden Einigkeit über ihre Chancen. Denn Open Data ermöglicht das Vorantreiben von Compliance-Themen wie Transparenz und Rechenschaftspflicht bis hin zur Förderung von Innovationen. Die Nutzung von Open Data erfordert Mut und eine gemeinsame Anstrengung verschiedener Akteure und Branchen. Im Rahmen des vorliegenden Beitrags werden auf Grundlage des Design Science-Ansatzes eine Open Data Capability Map sowie darauf aufbauend eine Datenarchitektur für Open Data in der Luftfahrtindustrie an einem Beispiel entwickelt.