Fachbereich Medizintechnik und Technomathematik
Refine
Year of publication
Institute
- Fachbereich Medizintechnik und Technomathematik (2186)
- IfB - Institut für Bioengineering (605)
- INB - Institut für Nano- und Biotechnologien (528)
- Fachbereich Chemie und Biotechnologie (41)
- Fachbereich Energietechnik (11)
- Nowum-Energy (9)
- Fachbereich Luft- und Raumfahrttechnik (8)
- IAP - Institut fuer Angewandte Polymerchemie (8)
- Fachbereich Wirtschaftswissenschaften (3)
- IDT - Institut für Datenbasierte Technologien (3)
Document Type
- Article (1601)
- Conference Proceeding (267)
- Book (99)
- Part of a Book (64)
- Conference: Meeting Abstract (60)
- Doctoral Thesis (28)
- Patent (17)
- Report (15)
- Conference Poster (10)
- Other (9)
Keywords
- Biosensor (25)
- Finite-Elemente-Methode (16)
- CAD (15)
- civil engineering (14)
- Bauingenieurwesen (13)
- Einspielen <Werkstoff> (12)
- shakedown analysis (9)
- FEM (7)
- Limit analysis (6)
- Shakedown analysis (6)
Magnetic Particle Spectroscopy (MPS) allows for direct characterization of magneto-physical properties of magnetic nanoparticles (MNP), which are widely researched as imaging tracers, biosensing units and therapeutic heating agents. All these applications rely primarily on the core size-dependent magnetic particle relaxation dynamics. Therefore, knowledge about core size of any MNP sample is crucial. Dual-frequency MPS increases the characterization potential by considering frequency mixing terms of the received signal of MNP, from which their sizes can be approximated. In this work, preliminary feasibility and interpretation of a proposed size reconstruction method is tested against precisely simulated input data from stochastically coupled Néel-Brownian relaxation modeling using Monte Carlo implementation.
The development of information retrieval and extraction systems is still a challenging task. The occurrence of natural language limits the application of existing approaches. Therefore the approach of a new framework which combines natural language processing and semantic web technology is discussed.
This paper focuses on ontology based knowledge modelling for semantic data extraction. Therefore, semantic verification techniques which can be used to improve the extraction are introduced.
ARTIFACT: Architecture for Automated Generation of Distributed Information Extraction Pipelines
(2022)
Companies often have to extract information from PDF documents by hand since these documents only are human-readable. To gain business value, companies attempt to automate these processes by using the newest technologies from research. In the field of table analysis, e.g., several hundred approaches were introduced in 2019. The formats of those PDF documents vary enormously and may change over time. Due to that, different and high adjustable extraction strategies are necessary to process the documents automatically, while specific steps are recurring. Thus, we provide an architectural pattern that ensures the modularization of strategies through microservices composed into pipelines. Crucial factors for success are identifying the most suitable pipeline and the reliability of their result. Therefore, the automated quality determination of pipelines creates two fundamental benefits. First, the provided system automatically identifies the best strategy for each input document at runtim e. Second, the provided system automatically integrates new microservices into pipelines as soon as they increase overall quality. Hence, the pattern enables fast prototyping of the newest approaches from research while ensuring that they achieve the required quality to gain business value.
Even though being a standard procedure in cardiac surgery, cardiopulmonary bypass (CPB) is associated with a 2-3% stroke prevalence, which increases towards 13% in high risk patients. Stroke can be caused by diminished brain perfusion and release of atherosclerotic plaques. Both are related to altered flow conditions in the aortic arch induced by the outflow cannula. By optimizing the cannula design, brain perfusion can be increased during CPB while decreasing stress on calcified aortic walls.
Haben Sie sich schon einmal darüber geärgert, dass einige Dozenten, Gruppenleiter oder Kollegen einfach nicht verständlich erklären können? Oder vielleicht sogar selber geflucht, weil einige der lieben Kollegen die Erklärungen, die man ihnen so ausführlich gegeben hat, einfach nicht verstehen (wollen)? Haben Sie auch schon einmal auf einen Spieleabend frustriert einer extrem umständlichen Erklärung der Spielregeln eines neuen Spiels zuhören müssen? So etwas ist nicht nur ärgerlich, es kann im professionellen Umfeld sogar richtig teuer oder gar gefährlich werden. Aber wer trägt die Schuld daran: Die/Derjenige, die/der’s vielleicht unzureichend erklärt hat? Die/derjenige, die/der die gegebenen Informationen nicht adäquat aufnimmt und umsetzt? Oder ist manche Thematik vielleicht so abgehoben, dass sie sich einer nachhaltigen Erklärung einfach grundsätzlich entzieht? Woran könnte es bloß liegen, dass mündlich weitergegebene Informationen allzu oft nicht behalten oder nicht im beabsichtigten Sinne praktisch umgesetzt werden? Wer diese Schuldfrage ein für alle Mal geklärt haben will, komme bitte nicht zu diesem Workshop. Denn wir werden drei prototypische Erklärungsszenarien unter die Lupe nehmen, um uns konstruktiv mit der Frage auseinanderzusetzen, wie gutes Erklären ablaufen kann. Wir werden gemeinsam erfahren, dass eine Erklärung, die der Empfänger memorieren und zielführend umsetzen kann, aus mehr als geschickt gewählten Wörtern besteht. Und dass auch mit der aktuellen Fokussierung auf digitale Kommunikationswege leider auch einige weitere Hürden hinzugekommen sind. Im Workshop werden wir in drei ersten Übungen grundlegende Kriterien, Regeln, Hinweise und Tipps identifizieren, die dafür sorgen, dass analoge und digitale Erklärungen im Sinne der/des Erklärenden die beabsichtigte Wirkung zeigen – oder warum sie das manchmal auch mal nicht tun.
What does the future biomedical engineering graduate need for a successful transition into industrial career? Modern industry and multi-discipline projects require highly trained individuals with resilient science and engineering backgrounds. These graduates must be able to agilely apply excellent theoretical knowledge in their subject matter as well as essential practical “hands-on” knowledge of diverse working processes to solve complex problems. To meet these demands placed on graduates, university education follows the concept of Constructive Alignment and thus increasingly adopts the teaching of necessary practical skills to the actual industry requirements and respective assessment routines. However, a systematic approach to coherently align these three central teaching demands is strangely absent from current university curricula.
Warum betreiben Menschen den logistischen, technischen und finanziellen Aufwand, sich in Meetings zu treffen? Weil sie das gemeinsame Verständnis zu einer bestimmten Sache voranbringen möchten und in der Hoffnung, im gemeinsamen Austausch weiter planen, besser entscheiden oder einfach mehr schaffen zu können, als allein. Im Kern jedes Meetings – ob im Privaten oder im Beruflichen – stehen die Wünsche, das gemeinsame Verständnis zu einer Sache zu vergrößern und Gedankengänge zu beschreiten, die nur in der kreativen Gemeinschaft entstehen können. Oder in den Worten von Hellmut Geißner „etwas gemeinsam zur Sache zu machen“ bzw. „etwas zur gemeinsamen Sache zu machen“. In der grundsätzlichen Idee ist uns das Konzept allen einleuchtend, aber in der Umsetzung erleben wir doch immer wieder einschränkende organisatorische Hindernisse oder lähmende methodische Abläufe. Um für alle Teilnehmenden und für uns selbst ein erfolgreiches Meeting durchführen zu können, sollten wir uns daher bereits im Vorfeld fragen: Was kann ich tun, um mein Meeting besser zu organisieren? Wo kann ich ansetzen, um den Erfolg des Meetings zu heben? Wir betrachten diese Fragen aus Sicht eines Moderators und stellen praktikable und konkrete Methoden und Ansätze zur Planung, Durchführung und Dokumentation von Meetings vor.
Cardiopulmonary bypass (CPB) is a standard procedure in cardiac surgery, with a 2-3% stroke prevalence, increasing towards 13% in high risk patients. Among the main reasons for stroke are diminished brain perfusion and release of atherosclerotic plaques, which are both related to altered flow conditions in the aortic arch caused by the outflow cannula. Here, we present an optimized cannula design (optiCAN), which increases brain perfusion during CPB while decreasing stress on potentially calcified aortic walls. This could reduce the prevalence of stroke in high risk patients, while maintaining a small incision site and minimal blood trauma.
Magnetic fluid hyperthermia (MFH) enables the controlled release of therapeutical heat using magnetic nanoparticles (MNP) as heating agents. The MNP are excited in an externally applied alternating magnetic f ield (AMF). The excitation energy is transformed into heat via magnetic relaxation of the MNP. This heat is then dissipated into their immediate surroundings, e. g. a tumor, facilitating the therapy of organ-confined cancer. Treatment efficacy relies on MFH efficiency to generate heat, which is dependent on the MNP interaction with their environment. Here, different approaches of modelling this interaction well as corresponding in vitrostudies are discussed with respect to two different applications: MFH after magnetic targeting of MNP to a tumor site and MFH through inductive heatable stents with incorporated MNP for treatment of endoluminal tumors. For these applications, MNP are restricted in their mobility and form clusters, which influences their magnetic relaxation and heating behavior. Using theoretical modelling techniques, sets of parameters are predicted which match field amplitude and frequency to MNP size and magnetic properties for optimized MFH efficiency. For the magnetic targeting application, the MNP interaction with tumor cells and its impact on heating efficiency is estimated by heating experiments on MNP immobilized in hydrogels, mimicking the settings in cellular environments such as binding to cell membranes and agglomeration inside lysosomes. Such hydrogels have tunable material properties that allow to quantify the effects of clustering and immobilization on particle heating. Further, the general feasibility of MFH is addressed with in vitro MFH experiments carried out with pancreatic tumor cells. Besides the obvious bulk temperature cytotoxic effect, the so-called nanoheating effect, i. e. heat developed up to 100 nm away from the MNP surface, is demonstrated. For the inductive heatable stents, different MNP are investigated concerning their concentration, immobilization and agglomeration effects on heating efficiency. The dipolar particle-particle interaction and the effective anisotropy energy increase for MNP agglomerates, directly influencing their non-linear dynamic magnetic susceptibility. Since hyperthermia and magnetic paticle imaging (MPI) rely on the non-linear dynamic magnetic susceptibility, the same behavior is observed in both techniques. So, the imaging performace of the stents is also presented.
Magnetic fluid hyperthermia (MFH) enables the controlled release of therapeutical heat using magnetic nanoparticles (MNP) as heating agents. The MNP are triggered to transform the energy of an externally applied alternating magnetic field into heat via relaxation of their magnetic moments. This heat is then dissipated into their immediate surroundings, e.g. a tumor, facilitating organ confined cancer treatment. While offering great potential in minimally-invasive localized cancer therapy, MFH efficacy relies on MNP efficiency to generate heat in interaction with the biological environment. Among other things, MNP are restricted in their mobility and form clusters under these physiological conditions, overall alternating their magnetic relaxation and heating behavior. Here, current approaches ranging from theorectical modelling to preclinical application of MFH are presented, specifically addressing MNP heating under these alternations. Particle heating modelling techinques are developed, predicting sets of parameters matching field amplitude and frequency as well as MNP size and magnetic properties for optimized MFH efficiency. The MNP interaction with tumor cells and its impact on heating efficiency is quantified and validated with heating experiments on MNP immobilized in hydrogels, mimicking the settings in cellular environments such as binding to the cell membranes and agglomeration inside lysosomes. These hydrogels have tunable materials properties that allow to quantify the effects of clustering and immobilization on the particle heating. Further, the general feasibility of MFH is addressed with in-vitro MFH experiments carried out on pancreatic tumor cells. Beyond the obvious bulk temperature cytotoxic effect, the so-called nanoheating effect is demonstrated. This effect underscores the use of MNP as therapeutical agents, which, combined with their use as diagnostic agents in magnetic particle imaging (MPI), display a promising theranostic platform for future biomedical applications.