• Treffer 1 von 1
Zurück zur Trefferliste

Sample-specific adaption of an improved electro-mechanical model of in vitro cardiac tissue

  • We present an electromechanically coupled computational model for the investigation of a thin cardiac tissue construct consisting of human-induced pluripotent stem cell-derived atrial, ventricular and sinoatrial cardiomyocytes. The mechanical and electrophysiological parts of the finite element model, as well as their coupling are explained in detail. The model is implemented in the open source finite element code Code_Aster and is employed for the simulation of a thin circular membrane deflected by a monolayer of autonomously beating, circular, thin cardiac tissue. Two cardio-active drugs, S-Bay K8644 and veratridine, are applied in experiments and simulations and are investigated with respect to their chronotropic effects on the tissue. These results demonstrate the potential of coupled micro- and macroscopic electromechanical models of cardiac tissue to be adapted to experimental results at the cellular level. Further model improvements are discussed taking into account experimentally measurable quantities that can easily be extracted from the obtained experimental results. The goal is to estimate the potential to adapt the presented model to sample specific cell cultures.

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Ralf FrotscherORCiD, Danita Muanghong, Gözde Dursun, Matthias GoßmannORCiD, Aysegül Temiz ArtmannORCiD, Manfred StaatORCiD
DOI:https://doi.org/10.1016/j.jbiomech.2016.01.039
ISSN:0021-9290 (Print)
ISSN:1873-2380 (Online)
Pubmed-Id:http://www.ncbi.nlm.nih.gov/pubmed?term=26972766
Titel des übergeordneten Werkes (Englisch):Journal of Biomechanics
Verlag:Elsevier
Verlagsort:Amsterdam
Dokumentart:Wissenschaftlicher Artikel
Sprache:Englisch
Erscheinungsjahr:2016
Datum der Publikation (Server):02.03.2016
Freies Schlagwort / Tag:Cardiac tissue; Computational biomechanics; Drug simulation; Electromechanical modeling; Frequency adaption; Hodgkin–Huxley models; Homogenization; hiPS cardiomyocytes
Jahrgang:49
Ausgabe / Heft:12
Erste Seite:2428
Letzte Seite:2435
Link:http://dx.doi.org/10.1016/j.jbiomech.2016.01.039
Zugriffsart:bezahl
Fachbereiche und Einrichtungen:FH Aachen / Fachbereich Medizintechnik und Technomathematik
FH Aachen / IfB - Institut für Bioengineering
collections:Verlag / Elsevier