Refine
Year of publication
Document Type
- Article (1249)
- Conference Proceeding (172)
- Book (39)
- Part of a Book (34)
- Doctoral Thesis (17)
- Patent (4)
- Other (3)
- Lecture (2)
Language
- English (1520) (remove)
Keywords
- Biosensor (25)
- Finite-Elemente-Methode (12)
- Einspielen <Werkstoff> (10)
- CAD (8)
- civil engineering (8)
- Bauingenieurwesen (7)
- FEM (6)
- Clusterion (5)
- shakedown analysis (5)
- Air purification (4)
- Hämoglobin (4)
- Limit analysis (4)
- Luftreiniger (4)
- Plasmacluster ion technology (4)
- Raumluft (4)
- Shakedown analysis (4)
- Einspielanalyse (3)
- Kohlenstofffaser (3)
- Lipopolysaccharide (3)
- Shakedown (3)
Institute
- Fachbereich Medizintechnik und Technomathematik (1520) (remove)
Λ, Image production in e+e- annihilation at 33 GeV centre of mass energy. TASSO Collaboration
(1981)
π0 production by e+e− annihilation at 14 and 34 GeV c.m. energy . TASSO Collaboration
(1982)
3rd YRA MedTech Symposium. YRA - Young Researchers Academy, MedTech in NRW, May 24, 2019, FH Aachen
(2019)
A 3D finite element model of the female pelvic floor for the reconstruction of urinary incontinence
(2014)
A Classical Reformulation of Finite-Dimensional Quantum Mechanics. Hellwig, K.-E.; Stulpe, W.
(1993)
The readout of gamma detectors is considerably simplified when the event intensity is encoded as a pulse width (Pulse Width Modulation, PWM). Time-to-Digital-Converters (TDC) replace the conventional ADCs and multiple TDCs can be realized easily in one PLD chip (Programmable Logic Device). The output of a PWM stage is only one digital signal per channel which is well suited for transport so that further processing can be performed apart from the detector. This is particularly interesting for large systems with high channel density (e.g. high resolution scanners). In this work we present a circuit with a linear transfer function that requires a minimum of components by performing the PWM already in the preamp stage. This allows a very compact and also cost-efficient implementation of the front-end electronics.
A concept for a sensitive micro total analysis system for high throughput fluorescence imaging
(2006)
This paper discusses possible methods for on-chip fluorescent imaging for integrated bio-sensors. The integration of optical and electro-optical accessories, according to suggested methods, can improve the performance of fluorescence imaging. It can boost the signal to background ratio by a few orders of magnitudes in comparison to conventional discrete setups. The methods that are present in this paper are oriented towards building reproducible arrays for high-throughput micro total analysis systems (µTAS). The first method relates to side illumination of the fluorescent material placed into microcompartments of the lab-on-chip. Its significance is in high utilization of excitation energy for low concentration of fluorescent material. The utilization of a transparent µLED chip, for the second method, allows the placement of the excitation light sources on the same optical axis with emission detector, such that the excitation and emission rays are directed controversly. The third method presents a spatial filtering of the excitation background.
A melting probe equipped with autofluorescence-based detection system combined with a light scattering unit, and, optionally, with a microarray chip would be ideally suited to probe icy environments like Europa’s ice layer as well as the polar ice layers of Earth and Mars for recent and extinct live.
A Formulation of Quantum Stochastic Processes and Some of its Properties. Hellwig, K.-E.; Stulpe, W.
(1983)
A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance
(2017)
Results are presented on the ratios of the nucleon structure function in copper to deuterium from two separate experiments. The data confirm that the nucleon structure function,F 2, is different for bound nucleons than for the quasi-free ones in the deuteron. The redistribution in the fraction of the nucleon's momentum carried by quarks is investigated and it is found that the data are compatible with no integral loss of quark momenta due to nuclear effects.
The spin asymmetry in deep inelastic scattering of longitudinally polarised muons by longitudinally polarised protons has been measured over a large x range (0.01<x<0.7). The spin-dependent structure function g1(x) for the proton has been determined and its integral over x found to be 0.114±0.012±0.026, in disagreement with the Ellis-Jaffe sum rule. Assuming the validity of the Bjorken sum rule, this result implies a significant negative value for the integral of g1 for the neutron. These values for the integrals of g1 lead to the conclusion that the total quark spin constitutes a rather small fraction of the spin of the nucleon.
A microscopic photometric method for measuring erythrocyte deformability. Artmann, Gerhard Michael
(1986)
A new 5.0 ns isomer in 144 Eu / D. R. Haenni ; H. Beuscher ; B. Bochev ... M. Müller-Veggian ...
(1981)
A New Class of Biosensors Based on Tobacco Mosaic Virus and Coat Proteins as Enzyme Nanocarrier
(2016)
A new in vitro tool to investigate cardiac contractility under physiological mechanical conditions
(2019)
A novel scheme for precise diagnostics and effective stabilization of currents in a fuel cell stack
(2010)
Within the developments for the Crystal Clear small animal PET project (CLEARPET) a dual head PET system has been established. The basic principle is the early digitization of the detector pulses by free running ADCs. The determination of the γ-energy and also the coincidence detection is performed by data processing of the sampled pulses on the host computer. Therefore a time mark is attached to each pulse identifying the current cycle of the 40 MHz sampling clock. In order to refine the time resolution the pulse starting time is interpolated from the samples of the pulse rise. The detector heads consist of multichannel PMTs with a single LSO scintillator crystal coupled to each channel. For each PMT only one ADC is required. The position of an event is obtained separately from trigger signals generated for each single channel. An FPGA is utilized for pulse buffering, generation of the time mark and for the data transfer to the host via a fast I/O-interface.
A small PET system has been built up with two multichannel photomultipliers, which are attached to a matrix of 64 single LSO crystals each. The signal from each multiplier is being sampled continuously by a 12 bit ADC at a sampling frequency of 40 MHz. In case of a scintillation pulse a subsequent FPGA sends the corresponding set of samples together with the channel information and a time mark to the host computer. The data transfer is performed with a rate of 20 MB/s. On the host all necessary information is extracted from the data. The pulse energy is determined, coincident events are detected and multiple hits within one matrix can be identified. In order to achieve a narrow time window the pulse starting time is refined further than the resolution of the time mark (=25 ns) would allow. This is possible by interpolating between the pulse samples. First data obtained from this system will be presented. The system is part of developments for a much larger system and has been created to study the feasibility and performance of the technique and the hardware architecture.
An optimization method is developed to describe the mechanical behaviour of the human cancellous bone. The method is based on a mixture theory. A careful observation of the behaviour of the bone material leads to the hypothesis that the bone density is controlled by the principal stress trajectories (Wolff’s law). The basic idea of the developed method is the coupling of a scalar value via an eigenvalue problem to the principal stress trajectories. On the one hand this theory will permit a prediction of the reaction of the biological bone structure after the implantation of a prosthesis, on the other hand it may be useful in engineering optimization problems. An analytical example shows its efficiency.